Categories
Prostate cancer

Prospective comparison of restriction spectrum imaging and non-invasive biomarkers to predict upgrading on active surveillance prostate biopsy

  • Johansson J-E, Andrén O, Andersson S-O, Dickman PW, Holmberg L, Magnuson A, et al. Natural history of early, localized prostate cancer. JAMA. 2004;291:2713–9.

    CAS 
    Article 

    Google Scholar
     

  • Mohler JL, Antonarakis ES, Armstrong AJ, D’Amico AV, Davis BJ, Dorff T, et al. Prostate Cancer, Version 2.2019, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2019;17:479–505.

    CAS 
    Article 

    Google Scholar
     

  • Cooperberg MR, Zheng Y, Faino AV, Newcomb LF, Zhu K, Cowan JE, et al. Tailoring intensity of active surveillance for low-risk prostate cancer based on individualized prediction of risk stability. JAMA Oncol. 2020;6:e203187.

    Article 

    Google Scholar
     

  • Detsky JS, Ghiam AF, Mamedov A, Commisso K, Commisso A, Zhang L, et al. Impact of biopsy compliance on outcomes for patients on active surveillance for prostate cancer. J Urol. 2020;204:934–40.

    Article 

    Google Scholar
     

  • Klotz L, Loblaw A, Sugar L, Moussa M, Berman DM, Van der Kwast T, et al. Active Surveillance Magnetic Resonance Imaging Study (ASIST): results of a randomized multicenter prospective trial. Eur Urol. 2019;75:300–9.

    Article 

    Google Scholar
     

  • Liss MA, Newcomb LF, Zheng Y, Garcia MP, Filson CP, Boyer H, et al. Magnetic resonance imaging for the detection of high grade cancer in the canary prostate active surveillance study. J Urol. 2020;204:701–6.

  • Chesnut GT, Vertosick EA, Benfante N, Sjoberg DD, Fainberg J, Lee T, et al. Role of changes in magnetic resonance imaging or clinical stage in evaluation of disease progression for men with prostate cancer on active surveillance. Eur Urol. 2020;77:501–7.

    Article 

    Google Scholar
     

  • Feng ZY, Wang L, Min XD, Wang SG, Wang GP, Cai J. Prostate cancer detection with multiparametric magnetic resonance imaging: Prostate Imaging Reporting and Data System Version 1 versus Version 2. Chin Med J (Engl). 2016;129:2451–9.

    Article 

    Google Scholar
     

  • Besasie BD, Sunnapwar AG, Gao F, Troyer D, Clarke GD, White H, et al. Restriction spectrum imaging-MRI to improve prostate cancer imaging in men on active surveillance. J Urol. 2021;206:44–51.

  • Quon JS, Moosavi B, Khanna M, Flood TA, Lim CS, Schieda N. False positive and false negative diagnoses of prostate cancer at multi-parametric prostate MRI in active surveillance. Insights Imaging. 2015;6:449–63.

    Article 

    Google Scholar
     

  • White NS, McDonald C, Farid N, Kuperman J, Karow D, Schenker-Ahmed NM, et al. Diffusion-weighted imaging in cancer: physical foundations and applications of restriction spectrum imaging. Cancer Res. 2014;74:4638–52.

    CAS 
    Article 

    Google Scholar
     

  • Newcomb LF, Zheng Y, Faino AV, Bianchi-Frias D, Cooperberg MR, Brown MD, et al. Performance of PCA3 and TMPRSS2:ERG urinary biomarkers in prediction of biopsy outcome in the Canary Prostate Active Surveillance Study (PASS). Prostate Cancer Prostatic Dis. 2019;22:438–45.

    CAS 
    Article 

    Google Scholar
     

  • Markowski MC, Boorjian SA, Burton JP, Hahn NM, Ingersoll MA, Maleki Vareki S, et al. The microbiome and genitourinary cancer: a collaborative review. Eur Urol. 2019;75:637–46.

    Article 

    Google Scholar
     

  • Tomlins SA, Day JR, Lonigro RJ, Hovelson DH, Siddiqui J, Kunju LP, et al. Urine TMPRSS2:ERG plus PCA3 for individualized prostate cancer risk assessment. Eur Urol. 2016;70:45–53.

    CAS 
    Article 

    Google Scholar
     

  • Vasarainen H, Salman J, Salminen H, Valdagni R, Pickles T, Bangma C, et al. Predictive role of free prostate-specific antigen in a prospective active surveillance program (PRIAS). World J Urol. 2015;33:1735–40.

    CAS 
    Article 

    Google Scholar
     

  • Seibert TM, Fan CC, Wang Y, Zuber V, Karunamuni R, Parsons JK, et al. Polygenic hazard score to guide screening for aggressive prostate cancer: development and validation in large scale cohorts. BMJ. 2018;360:j5757.

    Article 

    Google Scholar
     

  • Halstuch D, Ber Y, Margel D. Screening, active surveillance, and treatment of localized prostate cancer among carriers of germline BRCA mutations. Eur Urol Focus. 2020;6:212–4.

    Article 

    Google Scholar
     

  • Ahmad AE, Mohammed A, Bhindi B, Richard PO, Fadaak K, Leao R, et al. Serum adipokines as predictors for the outcome of prostate biopsies at early stage prostate cancer diagnosis. Cancer Manag Res. 2019;11:10043–50.

    CAS 
    Article 

    Google Scholar
     

  • Schwen ZR, Mamawala M, Tosoian JJ, Druskin SC, Ross AE, Sokoll LJ, et al. Prostate Health Index and multiparametric magnetic resonance imaging to predict prostate cancer grade reclassification in active surveillance. BJU Int. 2020;126:373–8.

    Article 

    Google Scholar
     

  • Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2001;29:1189–232.

    Article 

    Google Scholar
     

  • Kuhn M. Building predictive models in R using the caret package. J Stat Softw Artic. 2008;28:1–26.


    Google Scholar
     

  • Greenwell B, Boehmke B, Cunningham J, Developers G gbm: generalized boosted regression models. 2020.

  • P’ng C, Green J, Chong LC, Waggott D, Prokopec SD, Shamsi M, et al. BPG: seamless, automated and interactive visualization of scientific data. BMC Bioinformatics. 2019;20:42.

  • Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77.

    Article 

    Google Scholar
     

  • Therneau T, Atkinson B. rpart: recursive partitioning and regression trees. 2019.

  • Kinsella N, Stattin P, Cahill D, Brown C, Bill-Axelson A, Bratt O, et al. Factors influencing men’s choice of and adherence to active surveillance for low-risk prostate cancer: a mixed-method systematic review. Eur Urol. 2018;74:261–80.

    Article 

    Google Scholar
     

  • Bokhorst LP, Alberts AR, Rannikko A, Valdagni R, Pickles T, Kakehi Y, et al. Compliance rates with the Prostate Cancer Research International Active Surveillance (PRIAS) protocol and disease reclassification in noncompliers. Eur Urol. 2015;68:814–21.

    Article 

    Google Scholar
     

  • Van Hemelrijck M, Ji X, Helleman J, Roobol MJ, van der Linden W, Nieboer D, et al. Reasons for discontinuing active surveillance: assessment of 21 centres in 12 countries in the Movember GAP3 Consortium. Eur Urol. 2019;75:523–31.

    Article 

    Google Scholar
     

  • Willemse PM, Davis NF, Grivas N, Zattoni F, Lardas M, Briers E, et al. Systematic review of active surveillance for clinically localised prostate cancer to develop recommendations regarding inclusion of intermediate-risk disease, biopsy characteristics at inclusion and monitoring, and surveillance repeat biopsy strategy. Eur Urol. 2022;81:337–46.

  • Lange JM, Gulati R, Leonardson AS, Lin DW, Newcomb LF, Trock BJ, et al. Estimating and comparing cancer progression risks under varying surveillance protocols. Ann Appl Stat. 2018;12:1773–95.

    Article 

    Google Scholar