Categories
Prostate cancer

Quality checkpoints in the MRI-directed prostate cancer diagnostic pathway

  • Bjurlin, M. A. et al. Update of the standard operating procedure on the use of multiparametric magnetic resonance imaging for the diagnosis, staging and management of prostate cancer. J. Urol. 203, 706–712 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Mottet, N. et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer — 2020 update. Part 1: screening, diagnosis, and local treatment with curative intent. Eur. Urol. 79, 243–262 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mason, B. R. et al. Current status of MRI and PET in the NCCN guidelines for prostate cancer. J. Natl. Compr. Cancer Netw. 17, 506–513 (2019).

    CAS 
    Article 

    Google Scholar
     

  • NICE. Prostate cancer: diagnosis and management. NICE https://www.nice.org.uk/guidance/ng131 (2019).

  • Le Bihan, D. et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168, 497–505 (1988).

    PubMed 
    Article 

    Google Scholar
     

  • Bowden, D. & Barrett, T. Angiogenesis imaging in Neoplasia. J. Clin. Imaging Sci. 1, 38 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kasivisvanathan, V. et al. MRI-targeted or standard biopsy for prostate-cancer diagnosis. N. Engl. J. Med. 378, 1767–1777 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • van der Leest, M. et al. Head-to-head comparison of transrectal ultrasound-guided prostate biopsy versus multiparametric prostate resonance imaging with subsequent magnetic resonance-guided biopsy in biopsy-naïve men with elevated prostate-specific antigen: a large prospective Mu. Eur. Urol. 75, 570–578 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Ahmed, H. U. et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 389, 815–822 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Rouvière, O. et al. Use of prostate systematic and targeted biopsy on the basis of multiparametric MRI in biopsy-naive patients (MRI-FIRST): a prospective, multicentre, paired diagnostic study. Lancet Oncol. 20, 100–109 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Turkbey, B. et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2. Eur. Urol. 76, 340–351 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Venderink, W. et al. Multiparametric magnetic resonance imaging for the detection of clinically significant prostate cancer: what urologists need to know. Part 3: targeted biopsy. Eur. Urol. 77, 481–490 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Padhani, A. R. et al. PI-RADS steering committee: the PI-RADS multiparametric MRI and MRI-directed biopsy pathway. Radiology 292, 464–474 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Schoots, I. G. & Padhani, A. R. Risk-adapted biopsy decision based on prostate magnetic resonance imaging and prostate-specific antigen density for enhanced biopsy avoidance in first prostate cancer diagnostic evaluation. BJU Int. 127, 175–178 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Sathianathen, N. J. et al. Negative predictive value of multiparametric magnetic resonance imaging in the detection of clinically significant prostate cancer in the prostate imaging reporting and data system era: a systematic review and meta-analysis. Eur. Urol. 78, 402–414 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Park, K. J., Choi, S. H., Kim, M. H., Kim, J. K. & Jeong, I. G. Performance of prostate imaging reporting and data system version 2.1 for diagnosis of prostate cancer: a systematic review and meta-analysis. J. Magn. Reson. Imaging 54, 103–112 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Westphalen, A. C. et al. Variability of the positive predictive value of PI-RADS for prostate MRI across 26 centers: experience of the society of abdominal radiology prostate cancer disease-focused panel. Radiology 296, 76–84 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Radtke, J. P. et al. Multiparametric magnetic resonance imaging (MRI) and MRI–transrectal ultrasound fusion biopsy for index tumor detection: correlation with radical prostatectomy specimen. Eur. Urol. 70, 846–853 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Tan, N. et al. Characteristics of detected and missed prostate cancer foci on 3-T multiparametric MRI using an endorectal coil correlated with whole-mount thin-section histopathology. Am. J. Roentgenol. 205, W87–W92 (2015).

    Article 

    Google Scholar
     

  • Langer, D. L. et al. Intermixed normal tissue within prostate cancer: effect on MR imaging measurements of apparent diffusion coefficient and T2-sparse versus dense cancers. Radiology 249, 900–908 (2008).

    PubMed 
    Article 

    Google Scholar
     

  • Serrao, E. M. et al. Investigating the ability of multiparametric MRI to exclude significant prostate cancer prior to transperineal biopsy. J. Can. Urol. Assoc. 9, E853–E858 (2015).

    Article 

    Google Scholar
     

  • Salami, S. S. et al. Biologic significance of magnetic resonance imaging invisibility in localized prostate cancer. JCO Precis. Oncol. https://doi.org/10.1200/po.19.00054 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Esses, S. J., Taneja, S. S. & Rosenkrantz, A. B. Imaging facilities’ adherence to PI-RADS v2 minimum technical standards for the performance of prostate MRI. Acad. Radiol. 25, 188–195 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Burn, P. R. et al. A multicentre assessment of prostate MRI quality and compliance with UK and international standards. Clin. Radiol. 74, 894.e19–894.e25 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Rouvière, O., Souchon, R. & Melodelima, C. Pitfalls in interpreting positive and negative predictive values: application to prostate multiparametric magnetic resonance imaging. Diagn. Interv. Imaging 99, 515–518 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Barentsz, J. O. et al. ESUR prostate MR guidelines 2012. Eur. Radiol. 22, 746–757 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Weinreb, J. C. et al. PI-RADS prostate imaging — reporting and data system: 2015, version 2. Eur. Urol. 69, 16–40 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Sackett, J. et al. Quality of prostate MRI: is the PI-RADS standard sufficient? Acad. Radiol. 28, 199–207 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • van der Leest, M., Israël, B., Engels, R. R. M. & Barentsz, J. O. Reply to Arnaldo Stanzione, Massimo Imbriaco, and Renato Cuocolo’s Letter to the Editor re: Marloes van der Leest, Bas Israël, Eric Bastiaan Cornel, et al. High diagnostic performance of short magnetic resonance imaging protocols for prostate cancer detection in biopsy-naïve men: the next step in magnetic resonance imaging accessibility. Eur. Urol. 2019;76:574-81. Are we meeting our standards? Stringent prostate imaging reporting and data system acquisition requirements might be limiting prostate accessibility. Eur. Urol. 77, e58–e59 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Stabile, A. et al. Factors influencing variability in the performance of multiparametric magnetic resonance imaging in detecting clinically significant prostate cancer: a systematic literature review. Eur. Urol. Oncol. 3, 145–167 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Akin, O. et al. Interactive dedicated training curriculum improves accuracy in the interpretation of MR imaging of prostate cancer. Eur. Radiol. 20, 995–1002 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gaziev, G. et al. Defining the learning curve for multiparametric magnetic resonance imaging (MRI) of the prostate using MRI-transrectal ultrasonography (TRUS) fusion-guided transperineal prostate biopsies as a validation tool. BJU Int. 117, 80–86 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Stolk, T. T. et al. False positives in PIRADS (V2) 3, 4, and 5 lesions: relationship with reader experience and zonal location. Abdom. Radiol. 44, 1044–1051 (2019).

    Article 

    Google Scholar
     

  • Hansen, N. L. et al. Comparison of initial and tertiary centre second opinion reads of multiparametric magnetic resonance imaging of the prostate prior to repeat biopsy. Eur. Radiol. 27, 2259–2266 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Wibmer, A. et al. Diagnosis of extracapsular extension of prostate cancer on prostate MRI: Impact of second-opinion readings by subspecialized genitourinary oncologic radiologists. Am. J. Roentgenol. 205, W73–W78 (2015).

    Article 

    Google Scholar
     

  • Ecke, T. H. et al. Comparison of initial and second opinion reads of multiparametric magnetic resonance imaging of the prostate for transperineal template-guided biopsies with MRI-Ultrasound fusion. Urol. Oncol. Semin. Orig. Investig. 39, 781.e1–781.e7 (2021).


    Google Scholar
     

  • de Rooij, M. et al. ESUR/ESUI consensus statements on multi-parametric MRI for the detection of clinically significant prostate cancer: quality requirements for image acquisition, interpretation and radiologists’ training. Eur. Radiol. 30, 5404–5416 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Barrett, T. et al. Certification in reporting multiparametric magnetic resonance imaging of the prostate: recommendations of a UK consensus meeting. BJU Int. 127, 304–306 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • NHS. Cancer referral to treatment period start date. NHS https://www.datadictionary.nhs.uk/data_elements/cancer_referral_to_treatment_period_start_date.html (2022).

  • Redaniel, M. T., Martin, R. M., Gillatt, D., Wade, J. & Jeffreys, M. Time from diagnosis to surgery and prostate cancer survival: a retrospective cohort study. BMC Cancer 13, 559 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Panebianco, V. et al. Clinical utility of multiparametric magnetic resonance imaging as the first-line tool for men with high clinical suspicion of prostate cancer. Eur. Urol. Oncol. 1, 208–214 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • van der Leest, M. et al. High diagnostic performance of short magnetic resonance imaging protocols for prostate cancer detection in biopsy-naïve men: the next step in magnetic resonance imaging accessibility. Eur. Urol. 76, 574–581 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Kuhl, C. K. et al. Abbreviated biparametric prostate MR imaging in men with elevated prostate-specific antigen. Radiology 285, 493–505 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Sushentsev, N. et al. The effect of capped biparametric magnetic resonance imaging slots on weekly prostate cancer imaging workload. Br. J. Radiol. 93, 20190929 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zawaideh, J. P. et al. Diagnostic accuracy of biparametric versus multiparametric prostate MRI: assessment of contrast benefit in clinical practice. Eur. Radiol. 30, 4039–4049 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bass, E. J. et al. Prostate cancer diagnostic pathway: Is a one-stop cognitive MRI targeted biopsy service a realistic goal in everyday practice? A pilot cohort in a tertiary referral centre in the UK. BMJ Open 8, 24941 (2018).

    Article 

    Google Scholar
     

  • Purysko, A. S. & Rosenkrantz, A. B. Technique of multiparametric MR imaging of the prostate. Urol. Clin. North. Am. 45, 427–438 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Franiel, T. et al. MpMRI of the prostate (MR-prostatography): updated recommendations of the DRG and BDR on patient preparation and scanning protocol. Rofo 193, 763–776 (2021).

    PubMed 

    Google Scholar
     

  • Schoots, I. G. et al. PI-RADS committee position on MRI without contrast medium in biopsy-naive men with suspected prostate cancer: narrative review. Am. J. Roentgenol. 216, 3–19 (2021).

    Article 

    Google Scholar
     

  • Ippoliti, S. et al. Optimal biopsy approach for detection of clinically significant prostate cancer. Br. J. Radiol. 95, 20210413 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hansen, N. et al. Magnetic resonance and ultrasound image fusion supported transperineal prostate biopsy using the Ginsburg protocol: technique, learning points, and biopsy results. Eur. Urol. 70, 332–340 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Immerzeel, J. et al. Multiparametric magnetic resonance imaging for the detection of clinically significant prostate cancer: what urologists need to know. Part 4: transperineal magnetic resonance–ultrasound fusion guided biopsy using local anesthesia. Eur. Urol. 81, 110–117 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Brisbane, W. G. et al. Targeted prostate biopsy: umbra, penumbra, and value of perilesional sampling. Eur. Urol. https://doi.org/10.1016/j.eururo.2022.01.008 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Hansen, N. L. et al. Optimising the number of cores for magnetic resonance imaging-guided targeted and systematic transperineal prostate biopsy. BJU Int. 125, 260–269 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Epstein, J. I. et al. The 2014 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma: definition of grading patterns and proposal for a new grading system. Am. J. Surg. Pathol. 40, 244–252 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Drost, F.-J. H. et al. Prostate MRI, with or without MRI-targeted biopsy, and systematic biopsy for detecting prostate cancer. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.cd012663.pub2 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caglic, I. & Barrett, T. Optimising prostate mpMRI: prepare for success. Clin. Radiol. 74, 831–840 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Coskun, M. et al. Impact of bowel preparation with Fleet’sTM enema on prostate MRI quality. Abdom. Radiol. 45, 4252–4259 (2020).

    Article 

    Google Scholar
     

  • Czarniecki, M. et al. Role of PROPELLER-DWI of the prostate in reducing distortion and artefact from total hip replacement metalwork. Eur. J. Radiol. 102, 213–219 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Caglic, I., Hansen, N. L., Slough, R. A., Patterson, A. J. & Barrett, T. Evaluating the effect of rectal distension on prostate multiparametric MRI image quality. Eur. J. Radiol. 90, 174–180 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Engels, R. R. M., Israël, B., Padhani, A. R. & Barentsz, J. O. Multiparametric magnetic resonance imaging for the detection of clinically significant prostate cancer: what urologists need to know. part 1: acquisition. Eur. Urol. 77, 457–468 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Slough, R. A., Caglic, I., Hansen, N. L., Patterson, A. J. & Barrett, T. Effect of hyoscine butylbromide on prostate multiparametric MRI anatomical and functional image quality. Clin. Radiol. 73, 216.e9–216.e14 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Ullrich, T. et al. Hyoscine butylbromide significantly decreases motion artefacts and allows better delineation of anatomic structures in mp-MRI of the prostate. Eur. Radiol. 28, 17–23 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Purysko, A. S. et al. Influence of enema and dietary restrictions on prostate MR image quality: a multireader study. Acad. Radiol. 29, 4–14 (2022).

    PubMed 
    Article 

    Google Scholar
     

  • Reischauer, C., Cancelli, T., Malekzadeh, S., Froehlich, J. M. & Thoeny, H. C. How to improve image quality of DWI of the prostate — enema or catheter preparation? Eur. Radiol. 31, 6708–6716 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lim, C. et al. Does a cleansing enema improve image quality of 3T surface coil multiparametric prostate MRI? J. Magn. Reson. Imaging 42, 689–697 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • Czyzewska, D., Sushentsev, N., Latoch, E., Slough, R. A. & Barrett, T. T2-PROPELLER compared to T2-FRFSE for image quality and lesion detection at prostate MRI. Can. Assoc. Radiol. J. https://doi.org/10.1177/08465371211030206 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Meier-Schroers, M. et al. Revised PROPELLER for T2-weighted imaging of the prostate at 3 Tesla: impact on lesion detection and PI-RADS classification. Eur. Radiol. 28, 24–30 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Koch, K. M. et al. Analysis and evaluation of a deep learning reconstruction approach with denoising for orthopedic MRI. Radiol. Artif. Intell. 3, e200278 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gassenmaier, S. et al. Deep learning — accelerated T2-weighted imaging of the prostate: reduction of acquisition time and improvement of image quality. Eur. J. Radiol. 137, 109600 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Ueda, T. et al. Deep learning reconstruction of diffusion-weighted MRI improves image quality for prostatic imaging. Radiology https://doi.org/10.1148/radiol.204097 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moldovan, P. C. et al. What is the negative predictive value of multiparametric magnetic resonance imaging in excluding prostate cancer at biopsy? A systematic review and meta-analysis from the European Association of Urology Prostate Cancer Guidelines Panel. Eur. Urol. 72, 250–266 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Leeflang, M. M. G., Rutjes, A. W. S., Reitsma, J. B., Hooft, L. & Bossuyt, P. M. M. Variation of a test’s sensitivity and specificity with disease prevalence. CMAJ 185, E537–E544 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tan, N., Lakshmi, M., Hernandez, D. & Scuderi, A. Upcoming American College of Radiology prostate MRI designation launching: what to expect. Abdom. Radiol. 45, 4109–4111 (2020).

    Article 

    Google Scholar
     

  • Belue, M. J., Yilmaz, E. C., Daryanani, A. & Turkbey, B. Current status of biparametric MRI in prostate cancer diagnosis: literature analysis. Life 12, 804 (2022).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Barrett, T., Rajesh, A., Rosenkrantz, A. B., Choyke, P. L. & Turkbey, B. PI-RADS version 2.1: one small step for prostate MRI. Clin. Radiol. 74, 841–852 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Barrett, T., Turkbey, B. & Choyke, P. L. PI-RADS version 2: what you need to know. Clin. Radiol. 70, 1165–1176 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Papoutsaki, M. V. et al. Standardisation of prostate multiparametric MRI across a hospital network: a London experience. Insights Imaging 12, 52 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Giganti, F., Allen, C., Emberton, M., Moore, C. M. & Kasivisvanathan, V. Prostate imaging quality (PI-QUAL): a new quality control scoring system for multiparametric magnetic resonance imaging of the prostate from the PRECISION trial. Eur. Urol. Oncol. 3, 615–619 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Giganti, F. et al. Understanding PI-QUAL for prostate MRI quality: a practical primer for radiologists. Insights Imaging 12, 59 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Giganti, F. et al. Prostate MRI quality: a critical review of the last 5 years and the role of the PI-QUAL score. Br. J. Radiol. 95, 20210415 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Giganti, F. et al. Inter-reader agreement of the PI-QUAL score for prostate MRI quality in the NeuroSAFE PROOF trial. Eur. Radiol. https://doi.org/10.1007/s00330-021-08169-1 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boschheidgen, M. et al. Comparison and prediction of artefact severity due to total hip replacement in 1.5 T versus 3 T MRI of the prostate. Eur. J. Radiol. 144, 109949 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Karanasios, E., Caglic, I., Zawaideh, J. P. & Barrett, T. Prostate MRI quality: clinical impact of the PI-QUAL score in prostate cancer diagnostic work-up. Br. J. Radiol. https://doi.org/10.1259/bjr.20211372 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Arnoldner, M. A. et al. Rectal preparation significantly improves prostate imaging quality: assessment of the PI-QUAL score with visual grading characteristics. Eur. J. Radiol. 147, 110145 (2022).

    PubMed 
    Article 

    Google Scholar
     

  • Turkbey, B. Better image quality for diffusion-weighted MRI of the prostate using deep learning. Radiology https://doi.org/10.1148/radiol.212078 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • de Rooij, M. & Barentsz, J. O. PI-QUAL v.1: the first step towards good-quality prostate MRI. Eur. Radiol. 32, 876–878 (2022).

    PubMed 
    Article 

    Google Scholar
     

  • Cipollari, S. et al. Convolutional neural networks for automated classification of prostate multiparametric magnetic resonance imaging based on image quality. J. Magn. Reson. Imaging 55, 480–490 (2022).

    PubMed 
    Article 

    Google Scholar
     

  • Brizmohun Appayya, M. et al. National implementation of multi-parametric magnetic resonance imaging for prostate cancer detection–recommendations from a UK consensus meeting. BJU Int. 122, 13–25 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Puech, P. et al. How are we going to train a generation of radiologists (and urologists) to read prostate MRI? Curr. Opin. Urol. 25, 522–535 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • Rosenkrantz, A. B. et al. The learning curve in prostate MRI interpretation: self-directed learning versus continual reader feedback. Am. J. Roentgenol. 208, W92–W100 (2017).

    Article 

    Google Scholar
     

  • Greer, M. D. et al. Interreader variability of prostate imaging reporting and data system version 2 in detecting and assessing prostate cancer lesions at prostate MRI. Am. J. Roentgenol. 212, 1197–1205 (2019).

    Article 

    Google Scholar
     

  • Bhayana, R. et al. PI-RADS versions 2 and 2.1: interobserver agreement and diagnostic performance in peripheral and transition zone lesions among six radiologists. Am. J. Roentgenol. 217, 141–151 (2021).

    Article 

    Google Scholar
     

  • Smith, C. P. et al. Intra- and interreader reproducibility of PI-RADSv2: a multireader study. J. Magn. Reson. Imaging 49, 1694–1703 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Park, K. J. et al. Risk stratification of prostate cancer according to PI-RADS® version 2 categories: meta-analysis for prospective studies. J. Urol. 204, 1141–1149 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • de Rooij, M. et al. Focus on the quality of prostate multiparametric magnetic resonance imaging: synopsis of the ESUR/ESUI recommendations on quality assessment and interpretation of images and radiologists’ training. Eur. Urol. 78, 483–485 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Barrett, T. et al. Prostate MRI qualification: AJR expert panel narrative review. Am. J. Roentgenol. https://doi.org/10.2214/ajr.22.27615 (2022).

    Article 

    Google Scholar
     

  • Butler, P. F. MQSA (Mammography Quality Standards Act) update-focusing on quality assurance. Radiol. Manag. 20, 40–50 (1998).

    CAS 

    Google Scholar
     

  • Reis, C., Pascoal, A., Sakellaris, T. & Koutalonis, M. Quality assurance and quality control in mammography: a review of available guidance worldwide. Insights Imaging 4, 539–553 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pontone, G. et al. Training in cardiac computed tomography: EACVI certification process. Eur. Heart J. Cardiovasc. Imaging 19, 123–126 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Caglic, I. et al. Integration of prostate biopsy results with pre-biopsy multiparametric magnetic resonance imaging findings improves local staging of prostate cancer. Can. Assoc. Radiol. J. https://doi.org/10.1177/08465371211073158 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Wassberg, C. et al. The incremental value of contrast-enhanced MRI in the detection of biopsy-proven local recurrence of prostate cancer after radical prostatectomy: effect of reader experience. Am. J. Roentgenol. 199, 360–366 (2012).

    Article 

    Google Scholar
     

  • Gatti, M. et al. Prostate cancer detection with biparametric magnetic resonance imaging (bpMRI) by readers with different experience: performance and comparison with multiparametric (mpMRI). Abdom. Radiol. 44, 1883–1893 (2019).

    Article 

    Google Scholar
     

  • Greer, M. D. et al. Validation of the dominant sequence paradigm and role of dynamic contrast-enhanced imaging in Pi-RADS version 2. Radiology 285, 859–869 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Rothschild, J., Lourenco, A. P. & Mainiero, M. B. Screening mammography recall rate: does practice site matter? Radiology 269, 348–353 (2013).

    PubMed 
    Article 

    Google Scholar
     

  • Greer, M. D. et al. All over the map: an interobserver agreement study of tumor location based on the PI-RADSv2 sector map. J. Magn. Reson. Imaging 48, 482–490 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shaish, H. et al. Impact of a structured reporting template on adherence to prostate imaging reporting and data system version 2 and on the diagnostic performance of prostate MRI for clinically significant prostate cancer. J. Am. Coll. Radiol. 15, 749–754 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Rudolph, M. M. et al. Validation of the PI-RADS language: predictive values of PI-RADS lexicon descriptors for detection of prostate cancer. Eur. Radiol. 30, 4262–4271 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Purysko, A. S. et al. PI-RADS version 2.1: a critical review, from the AJR special series on radiology reporting and data systems. Am. J. Roentgenol. 216, 20–32 (2021).

    Article 

    Google Scholar
     

  • Snoj, Ž., Rundo, L., Gill, A. B. & Barrett, T. Quantifying the effect of biopsy lateral decubitus patient positioning compared to supine prostate MRI scanning on prostate translocation and distortion. Can. Urol. Assoc. J. 14, E445–E452 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zawaideh, J. P. et al. Comparison of Likert and PI-RA DS version 2 MRI scoring systems for the detection of clinically significant prostate cancer. Br. J. Radiol. 93, 20200298 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Khoo, C. C. et al. Likert vs PI-RADS v2: a comparison of two radiological scoring systems for detection of clinically significant prostate cancer. BJU Int. 125, 49–55 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Latifoltojar, A., Appayya, M. B., Barrett, T. & Punwani, S. Similarities and differences between Likert and PIRADS v2.1 scores of prostate multiparametric MRI: a pictorial review of histology-validated cases. Clin. Radiol. 74, 895.e1–895.e15 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Hansen, N. L. et al. Multiparametric prostate magnetic resonance imaging and cognitively targeted transperineal biopsy in patients with previous abdominoperineal resection and suspicion of prostate cancer. Urology 96, 8–14 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Puech, P. et al. Multiparametric MRI-targeted TRUS prostate biopsies using visual registration. Biomed Res. Int. 2014, (2014).

  • Beyersdorff, D. et al. MR imaging-guided prostate biopsy with a closed MR unit at 1.5 T: initial results. Radiology 234, 576–581 (2005).

    PubMed 
    Article 

    Google Scholar
     

  • Wegelin, O. et al. Comparing three different techniques for magnetic resonance imaging-targeted prostate biopsies: a systematic review of in-bore versus magnetic resonance imaging-transrectal ultrasound fusion versus cognitive registration. Is there a preferred technique? Eur. Urol. 71, 517–531 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Simmons, L. A. M. et al. Accuracy of transperineal targeted prostate biopsies, visual estimation and image fusion in men needing repeat biopsy in the PICTURE trial. J. Urol. 200, 1227–1234 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Hamid, S. et al. The SmartTarget biopsy trial: a prospective, within-person randomised, blinded trial comparing the accuracy of visual-registration and magnetic resonance imaging/ultrasound image-fusion targeted biopsies for prostate cancer risk stratification. Eur. Urol. 75, 733–740 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Watts, K. L. et al. Systematic review and meta-analysis comparing cognitive vs. image-guided fusion prostate biopsy for the detection of prostate cancer. Urol. Oncol. Semin. Orig. Investig. 38, 734.e19–734.e25 (2020).


    Google Scholar
     

  • Venderink, W., Govers, T. M., De Rooij, M., Futterer, J. J. & Sedelaar, J. P. M. Cost-effectiveness comparison of imaging-guided prostate biopsy techniques: systematic transrectal ultrasound, direct in-bore MRI, and image fusion. Am. J. Roentgenol. 208, 1058–1063 (2017).

    Article 

    Google Scholar
     

  • Hale, G. R. et al. Comparison of elastic and rigid registration during magnetic resonance imaging/ultrasound fusion-guided prostate biopsy: a multi-operator phantom study. J. Urol. 200, 1114–1121 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ukimura, O. et al. 3-Dimensional elastic registration system of prostate biopsy location by real-time 3-dimensional transrectal ultrasound guidance with magnetic resonance/transrectal ultrasound image fusion. J. Urol. 187, 1080–1086 (2012).

    PubMed 
    Article 

    Google Scholar
     

  • Valerio, M. et al. Detection of clinically significant prostate cancer using magnetic resonance imaging-ultrasound fusion targeted biopsy: a systematic review. Eur. Urol. 68, 8–19 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • Tamhankar, A. S. et al. The clinical and financial implications of a decade of prostate biopsies in the NHS: analysis of hospital episode statistics data 2008–2019. BJU Int. 126, 133–141 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Gorin, M. A. et al. Transperineal prostate biopsy with cognitive magnetic resonance imaging/biplanar ultrasound fusion: description of technique and early results. World J. Urol. 38, 1943–1949 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Pepdjonovic, L. et al. Zero hospital admissions for infection after 577 transperineal prostate biopsies using single-dose cephazolin prophylaxis. World J. Urol. 35, 1199–1203 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hossack, T. et al. Location and pathological characteristics of cancers in radical prostatectomy specimens identified by transperineal biopsy compared to transrectal biopsy. J. Urol. 188, 781–785 (2012).

    PubMed 
    Article 

    Google Scholar
     

  • Israël, B. et al. Clinical implementation of pre-biopsy magnetic resonance imaging pathways for the diagnosis of prostate cancer. BJU Int. https://doi.org/10.1111/BJU.15562 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiang, J. et al. Transperineal versus transrectal prostate biopsy in the diagnosis of prostate cancer: a systematic review and meta-analysis. World J. Surg. Oncol. 17, 31 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kuru, T. H. et al. Definitions of terms, processes and a minimum dataset for transperineal prostate biopsies: a standardization approach of the Ginsburg Study Group for enhanced prostate diagnostics. BJU Int. 112, 568–577 (2013).

    PubMed 
    Article 

    Google Scholar
     

  • Onik, G. & Barzell, W. Transperineal 3D mapping biopsy of the prostate: an essential tool in selecting patients for focal prostate cancer therapy. Urol. Oncol. Semin. Orig. Investig. 26, 506–510 (2008).


    Google Scholar
     

  • Hansen, N. L. et al. Multicentre evaluation of targeted and systematic biopsies using magnetic resonance and ultrasound image-fusion guided transperineal prostate biopsy in patients with a previous negative biopsy. BJU Int. 120, 631–638 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hansen, N. L. et al. Multicentre evaluation of magnetic resonance imaging supported transperineal prostate biopsy in biopsy-naïve men with suspicion of prostate cancer. BJU Int. 122, 40–49 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Das, C. J., Razik, A., Netaji, A. & Verma, S. Prostate MRI–TRUS fusion biopsy: a review of the state of the art procedure. Abdom. Radiol. 45, 2176–2183 (2020).

    Article 

    Google Scholar
     

  • Moore, C. M. et al. Standards of reporting for MRI-targeted biopsy studies (START) of the prostate: recommendations from an international working group. Eur. Urol. 64, 544–552 (2013).

    PubMed 
    Article 

    Google Scholar
     

  • Schouten, M. G. et al. Why and where do we miss significant prostate cancer with multi-parametric magnetic resonance imaging followed by magnetic resonance-guided and transrectal ultrasound-guided biopsy in biopsy-naïve men? Eur. Urol. 71, 896–903 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Tracy, C. R. et al. Optimizing MRI-targeted prostate biopsy: the diagnostic benefit of additional targeted biopsy cores. Urol. Oncol. Semin. Orig. Investig. 39, 193.e1–193.e6 (2021).


    Google Scholar
     

  • Ploussard, G. et al. Assessment of the minimal targeted biopsy core number per MRI lesion for improving prostate cancer grading prediction. J. Clin. Med. 9, 225 (2020).

    PubMed Central 
    Article 

    Google Scholar
     

  • Lu, A. J. et al. Role of core number and location in targeted magnetic resonance imaging-ultrasound fusion prostate biopsy. Eur. Urol. 76, 14–17 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Meng, X. et al. The institutional learning curve of magnetic resonance imaging-ultrasound fusion targeted prostate biopsy: temporal improvements in cancer detection in 4 years. J. Urol. 200, 1022–1029 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Bevill, M. D. et al. Number of cores needed to diagnose prostate cancer during MRI targeted biopsy decreases after the learning curve. Urol. Oncol. Semin. Orig. Investig. https://doi.org/10.1016/j.urolonc.2021.05.029 (2021).

    Article 

    Google Scholar
     

  • Costa, D. N. et al. Gleason grade group concordance between preoperative targeted biopsy and radical prostatectomy histopathologic analysis: a comparison between in-bore MRI-guided and MRI–transrectal US fusion prostate biopsies. Radiol. Imaging Cancer 3, e200123 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gnanapragasam, V. J. et al. Using prognosis to guide inclusion criteria, define standardised endpoints and stratify follow-up in active surveillance for prostate cancer. BJU Int. 124, 758–767 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kench, J. G. et al. Dataset for the reporting of prostate carcinoma in radical prostatectomy specimens: updated recommendations from the International Collaboration on Cancer Reporting. Virchows Arch. 475, 263–277 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Egevad, L. et al. Standardization of Gleason grading among 337 European pathologists. Histopathology 62, 247–256 (2013).

    PubMed 
    Article 

    Google Scholar
     

  • Chen, S. D., Fava, J. L. & Amin, A. Gleason grading challenges in the diagnosis of prostate adenocarcinoma: experience of a single institution. Virchows Arch. 468, 213–218 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Siedow, M. et al. Impact of prostate biopsy secondary pathology review on radiotherapy management. Prostate 82, 210–215 (2022).

    PubMed 
    Article 

    Google Scholar
     

  • Smith, E. B., Frierson, H. F., Mills, S. E., Boyd, J. C. & Theodorescu, D. Gleason scores of prostate biopsy and radical prostatectomy specimens over the past 10 years: is there evidence for systematic upgrading? Cancer 94, 2282–2287 (2002).

    PubMed 
    Article 

    Google Scholar
     

  • Allsbrook, W. C. et al. Interobserver reproducibility of Gleason grading of prostatic carcinoma: urologic pathologists. Hum. Pathol. 32, 74–80 (2001).

    PubMed 
    Article 

    Google Scholar
     

  • Short, E., Warren, A. Y. & Varma, M. Gleason grading of prostate cancer: a pragmatic approach. Diagn. Histopathol. 25, 371–378 (2019).

    Article 

    Google Scholar
     

  • Egevad, L., Delahunt, B., Yaxley, J. & Samaratunga, H. Evolution, controversies and the future of prostate cancer grading. Pathol. Int. 69, 55–66 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Epstein, J. I., Feng, Z., Trock, B. J. & Pierorazio, P. M. Upgrading and downgrading of prostate cancer from biopsy to radical prostatectomy: incidence and predictive factors using the modified Gleason grading system and factoring in tertiary grades. Eur. Urol. 61, 1019–1024 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ozkan, T. A. et al. Interobserver variability in Gleason histological grading of prostate cancer. Scand. J. Urol. 50, 420–424 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kweldam, C. F., van Leenders, G. J. & van der Kwast, T. Grading of prostate cancer: a work in progress. Histopathology 74, 146–160 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Egevad, L. et al. Utility of pathology imagebase for standardisation of prostate cancer grading. Histopathology 73, 8–18 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Harnden, P. et al. Evaluation of the use of digital images for a national prostate core external quality assurance scheme. Histopathology 59, 703–709 (2011).

    PubMed 
    Article 

    Google Scholar
     

  • Bulten, W. et al. Artificial intelligence assistance significantly improves Gleason grading of prostate biopsies by pathologists. Mod. Pathol. 34, 660–671 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nagpal, K. et al. Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer. npj Digit. Med. 2, 1–10 (2019).


    Google Scholar
     

  • Bulten, W. et al. Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study. Lancet Oncol. 21, 233–241 (2020).

    PubMed 
    Article 

    Google Scholar