Categories
Prostate cancer

The endoplasmic reticulum stress response in prostate cancer

  • Hetz, C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 13, 89–102 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Ballar Kirmizibayrak, P., Erbaykent-Tepedelen, B., Gozen, O. & Erzurumlu, Y. Divergent modulation of proteostasis in prostate cancer. Adv. Exp. Med. Biol. 1233, 117–151 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Ron, D. & Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8, 519–529 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Hsu, S. K. et al. Unfolded protein response (UPR) in survival, dormancy, immunosuppression, metastasis, and treatments of cancer cells. Int. J. Mol. Sci. https://doi.org/10.3390/ijms20102518 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 72, 7–33 (2022).

    PubMed 

    Google Scholar
     

  • Schweizer, M. T. & Yu, E. Y. Persistent androgen receptor addiction in castration-resistant prostate cancer. J. Hematol. Oncol. 8, 128 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, H. G. et al. Development of a stress response therapy targeting aggressive prostate cancer. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aar2036 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin, Y. & Saatcioglu, F. Targeting the unfolded protein response in hormone-regulated cancers. Trends Cancer 6, 160–171 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Schwarz, D. S. & Blower, M. D. The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol. Life Sci. 73, 79–94 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Fagone, P. & Jackowski, S. Membrane phospholipid synthesis and endoplasmic reticulum function. J. Lipid Res. 50 (Suppl.), S311–S316 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hudson, D. A., Gannon, S. A. & Thorpe, C. Oxidative protein folding: from thiol-disulfide exchange reactions to the redox poise of the endoplasmic reticulum. Free Radic. Biol. Med. 80, 171–182 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Hwang, C., Sinskey, A. J. & Lodish, H. F. Oxidized redox state of glutathione in the endoplasmic reticulum. Science 257, 1496–1502 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • Barlowe, C. K. & Miller, E. A. Secretory protein biogenesis and traffic in the early secretory pathway. Genetics 193, 383–410 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stephens, S. B. & Nicchitta, C. V. Divergent regulation of protein synthesis in the cytosol and endoplasmic reticulum compartments of mammalian cells. Mol. Biol. Cell 19, 623–632 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Braakman, I. & Hebert, D. N. Protein folding in the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol. 5, a013201 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, C., Bailly-Maitre, B. & Reed, J. C. Endoplasmic reticulum stress: cell life and death decisions. J. Clin. Invest. 115, 2656–2664 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sitia, R. & Braakman, I. Quality control in the endoplasmic reticulum protein factory. Nature 426, 891–894 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Walter, P. & Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081–1086 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Limia, C. M. et al. Emerging roles of the endoplasmic reticulum associated unfolded protein response in cancer cell migration and invasion. Cancers https://doi.org/10.3390/cancers11050631 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ellgaard, L. & Helenius, A. Quality control in the endoplasmic reticulum. Nat. Rev. Mol. Cell Biol. 4, 181–191 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Lin, J. H., Walter, P. & Yen, T. S. Endoplasmic reticulum stress in disease pathogenesis. Annu. Rev. Pathol. 3, 399–425 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schonthal, A. H. Endoplasmic reticulum stress: its role in disease and novel prospects for therapy. Scientifica 2012, 857516 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harding, H. P., Zhang, Y., Bertolotti, A., Zeng, H. & Ron, D. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol. Cell 5, 897–904 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Gardner, B. M. & Walter, P. Unfolded proteins are Ire1-activating ligands that directly induce the unfolded protein response. Science 333, 1891–1894 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tam, A. B. et al. The UPR activator ATF6 responds to proteotoxic and lipotoxic stress by distinct mechanisms. Dev. Cell 46, 327–343.e327 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carrara, M., Prischi, F. & Ali, M. M. UPR signal activation by luminal sensor domains. Int. J. Mol. Sci. 14, 6454–6466 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tabas, I. & Ron, D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat. Cell Biol. 13, 184–190 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cox, J. S., Shamu, C. E. & Walter, P. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 73, 1197–1206 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • Adams, C. J., Kopp, M. C., Larburu, N., Nowak, P. R. & Ali, M. M. U. Structure and molecular mechanism of ER stress signaling by the unfolded protein response signal activator IRE1. Front. Mol. Biosci. 6, 11 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meusser, B., Hirsch, C., Jarosch, E. & Sommer, T. ERAD: the long road to destruction. Nat. Cell Biol. 7, 766–772 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Maurel, M., Chevet, E., Tavernier, J. & Gerlo, S. Getting RIDD of RNA: IRE1 in cell fate regulation. Trends Biochem. Sci. 39, 245–254 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, L., Chen, J. & Fu, H. Suppression of apoptosis signal-regulating kinase 1-induced cell death by 14-3-3 proteins. Proc. Natl Acad. Sci. USA 96, 8511–8515 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bertolotti, A., Zhang, Y., Hendershot, L. M., Harding, H. P. & Ron, D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat. Cell Biol. 2, 326–332 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Proud, C. G. eIF2 and the control of cell physiology. Semin. Cell Dev. Biol. 16, 3–12 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Wek, R. C., Jiang, H. Y. & Anthony, T. G. Coping with stress: eIF2 kinases and translational control. Biochem. Soc. Trans. 34, 7–11 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Palam, L. R., Baird, T. D. & Wek, R. C. Phosphorylation of eIF2 facilitates ribosomal bypass of an inhibitory upstream ORF to enhance CHOP translation. J. Biol. Chem. 286, 10939–10949 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vattem, K. M. & Wek, R. C. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc. Natl Acad. Sci. USA 101, 11269–11274 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsuru, A., Imai, Y., Saito, M. & Kohno, K. Novel mechanism of enhancing IRE1alpha-XBP1 signalling via the PERK-ATF4 pathway. Sci. Rep. 6, 24217 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iurlaro, R. & Munoz-Pinedo, C. Cell death induced by endoplasmic reticulum stress. FEBS J. 283, 2640–2652 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Pakos-Zebrucka, K. et al. The integrated stress response. EMBO Rep. 17, 1374–1395 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Denoyelle, C. et al. Anti-oncogenic role of the endoplasmic reticulum differentially activated by mutations in the MAPK pathway. Nat. Cell Biol. 8, 1053–1063 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Hart, L. S. et al. ER stress-mediated autophagy promotes Myc-dependent transformation and tumor growth. J. Clin. Invest. 122, 4621–4634 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hai, T. W., Liu, F., Coukos, W. J. & Green, M. R. Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers. Genes Dev. 3, 2083–2090 (1989).

    CAS 
    PubMed 

    Google Scholar
     

  • Shen, J., Chen, X., Hendershot, L. & Prywes, R. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev. Cell 3, 99–111 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Nadanaka, S., Okada, T., Yoshida, H. & Mori, K. Role of disulfide bridges formed in the luminal domain of ATF6 in sensing endoplasmic reticulum stress. Mol. Cell Biol. 27, 1027–1043 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Ni, M. & Lee, A. S. ER chaperones in mammalian development and human diseases. FEBS Lett. 581, 3641–3651 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, B. & Lee, A. S. The critical roles of endoplasmic reticulum chaperones and unfolded protein response in tumorigenesis and anticancer therapies. Oncogene 32, 805–818 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Krebs, J., Agellon, L. B. & Michalak, M. Ca2+ homeostasis and endoplasmic reticulum (ER) stress: an integrated view of calcium signaling. Biochem. Biophys. Res. Commun. 460, 114–121 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Berridge, M. J., Lipp, P. & Bootman, M. D. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11–21 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Lievremont, J. P., Rizzuto, R., Hendershot, L. & Meldolesi, J. BiP, a major chaperone protein of the endoplasmic reticulum lumen, plays a direct and important role in the storage of the rapidly exchanging pool of Ca2+. J. Biol. Chem. 272, 30873–30879 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Roderick, H. L., Lechleiter, J. D. & Camacho, P. Cytosolic phosphorylation of calnexin controls intracellular Ca2+ oscillations via an interaction with SERCA2b. J. Cell Biol. 149, 1235–1248 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carreras-Sureda, A., Pihan, P. & Hetz, C. Calcium signaling at the endoplasmic reticulum: fine-tuning stress responses. Cell Calcium 70, 24–31 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • John, L. M., Lechleiter, J. D. & Camacho, P. Differential modulation of SERCA2 isoforms by calreticulin. J. Cell Biol. 142, 963–973 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cardenas, C. et al. Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 142, 270–283 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinton, P. & Rizzuto, R. Bcl-2 and Ca2+ homeostasis in the endoplasmic reticulum. Cell Death Differ. 13, 1409–1418 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Cairns, R. A., Harris, I. S. & Mak, T. W. Regulation of cancer cell metabolism. Nat. Rev. Cancer 11, 85–95 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Galluzzi, L., Yamazaki, T. & Kroemer, G. Linking cellular stress responses to systemic homeostasis. Nat. Rev. Mol. Cell Biol. 19, 731–745 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 70, 7–30 (2020).

    PubMed 

    Google Scholar
     

  • NCCN. Prostate Cancer NCCN Evidence Blocks. NCCN https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf (2022).

  • NCCN. NCCN Guidelines Version 1.2020 Prostate Cancer. NCCN https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf (2020).

  • Storm, M., Sheng, X., Arnoldussen, Y. J. & Saatcioglu, F. Prostate cancer and the unfolded protein response. Oncotarget 7, 54051–54066 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Madden, E., Logue, S. E., Healy, S. J., Manie, S. & Samali, A. The role of the unfolded protein response in cancer progression: from oncogenesis to chemoresistance. Biol. Cell 111, 1–17 (2019).

    PubMed 

    Google Scholar
     

  • Moenner, M., Pluquet, O., Bouchecareilh, M. & Chevet, E. Integrated endoplasmic reticulum stress responses in cancer. Cancer Res. 67, 10631–10634 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Koumenis, C. & Wouters, B. G. “Translating” tumor hypoxia: unfolded protein response (UPR)-dependent and UPR-independent pathways. Mol. Cancer Res. 4, 423–436 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Romero-Ramirez, L. et al. XBP1 is essential for survival under hypoxic conditions and is required for tumor growth. Cancer Res. 64, 5943–5947 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Blais, J. D. et al. Perk-dependent translational regulation promotes tumor cell adaptation and angiogenesis in response to hypoxic stress. Mol. Cell Biol. 26, 9517–9532 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bi, M. et al. ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. EMBO J. 24, 3470–3481 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weidemann, A. & Johnson, R. S. Biology of HIF-1α. Cell Death Differ. 15, 621–627 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Chen, X. et al. XBP1 promotes triple-negative breast cancer by controlling the HIF1α pathway. Nature 508, 103–107 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vergis, R. et al. Intrinsic markers of tumour hypoxia and angiogenesis in localised prostate cancer and outcome of radical treatment: a retrospective analysis of two randomised radiotherapy trials and one surgical cohort study. Lancet Oncol. 9, 342–351 (2008).

    PubMed 

    Google Scholar
     

  • Ivanova, I. G., Park, C. V., Yemm, A. I. & Kenneth, N. S. PERK/eIF2α signaling inhibits HIF-induced gene expression during the unfolded protein response via YB1-dependent regulation of HIF1α translation. Nucleic Acids Res. 46, 3878–3890 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jamaspishvili, T. et al. Clinical implications of PTEN loss in prostate cancer. Nat. Rev. Urol. 15, 222–234 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faisal, F. A. & Lotan, T. L. The genomic and molecular pathology of prostate cancer: clinical implications for diagnosis, prognosis, and therapy. Adv. Anat. Pathol. 27, 11–19 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Kim, J., Eltoum, I. E., Roh, M., Wang, J. & Abdulkadir, S. A. Interactions between cells with distinct mutations in c-MYC and Pten in prostate cancer. PLoS Genet. 5, e1000542 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruggero, D. The role of Myc-induced protein synthesis in cancer. Cancer Res. 69, 8839–8843 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pallmann, N. et al. Regulation of the unfolded protein response through ATF4 and FAM129A in prostate cancer. Oncogene 38, 6301–6318 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Sheng, X. et al. Divergent androgen regulation of unfolded protein response pathways drives prostate cancer. EMBO Mol. Med. 7, 788–801 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rouschop, K. M. et al. The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J. Clin. Invest. 120, 127–141 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Huang, Y. L. et al. Extrinsic sphingosine 1-phosphate activates S1P5 and induces autophagy through generating endoplasmic reticulum stress in human prostate cancer PC-3 cells. Cell Signal. 26, 611–618 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, R. et al. ATF6α promotes prostate cancer progression by enhancing PLA2G4A-mediated arachidonic acid metabolism and protecting tumor cells against ferroptosis. Prostate 82, 617–629 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahadevan, N. R. et al. Transmission of endoplasmic reticulum stress and pro-inflammation from tumor cells to myeloid cells. Proc. Natl Acad. Sci. USA 108, 6561–6566 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodvold, J. J. et al. Intercellular transmission of the unfolded protein response promotes survival and drug resistance in cancer cells. Sci. Signal. https://doi.org/10.1126/scisignal.aah7177 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Direito, I., Fardilha, M. & Helguero, L. A. Contribution of the unfolded protein response to breast and prostate tissue homeostasis and its significance to cancer endocrine response. Carcinogenesis 40, 203–215 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Lee, A. S. GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res. 67, 3496–3499 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Daneshmand, S. et al. Glucose-regulated protein GRP78 is up-regulated in prostate cancer and correlates with recurrence and survival. Hum. Pathol. 38, 1547–1552 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Pootrakul, L. et al. Expression of stress response protein Grp78 is associated with the development of castration-resistant prostate cancer. Clin. Cancer Res. 12, 5987–5993 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Maddalo, D. et al. A peptidic unconjugated GRP78/BiP ligand modulates the unfolded protein response and induces prostate cancer cell death. PLoS ONE 7, e45690 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, R. et al. Monoclonal antibody against cell surface GRP78 as a novel agent in suppressing PI3K/AKT signaling, tumor growth, and metastasis. Clin. Cancer Res. 19, 6802–6811 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, Y. et al. Pten null prostate tumorigenesis and AKT activation are blocked by targeted knockout of ER chaperone GRP78/BiP in prostate epithelium. Proc. Natl Acad. Sci. USA 105, 19444–19449 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Cancer cells resistant to therapy promote cell surface relocalization of GRP78 which complexes with PI3K and enhances PI(3,4,5)P3 production. PLoS ONE 8, e80071 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, P., Cheng, H., Roberts, T. M. & Zhao, J. J. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov. 8, 627–644 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Binet, F. & Sapieha, P. ER stress and angiogenesis. Cell Metab. 22, 560–575 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Ghosh, R. et al. Transcriptional regulation of VEGF-A by the unfolded protein response pathway. PLoS ONE 5, e9575 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong, D. et al. Critical role of the stress chaperone GRP78/BiP in tumor proliferation, survival, and tumor angiogenesis in transgene-induced mammary tumor development. Cancer Res. 68, 498–505 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Taghizadeh, S. et al. sFLT01 modulates invasion and metastasis in prostate cancer DU145 cells by inhibition of VEGF/GRP78/MMP2&9 axis. BMC Mol. Cell Biol. 22, 30 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang, J., Ding, M., Yang, L., Liu, L. Z. & Jiang, B. H. PI3K/PTEN/AKT signaling regulates prostate tumor angiogenesis. Cell Signal. 19, 2487–2497 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murakami, T. et al. Cleavage of the membrane-bound transcription factor OASIS in response to endoplasmic reticulum stress. J. Neurochem. 96, 1090–1100 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Mellor, P. et al. CREB3L1 is a metastasis suppressor that represses expression of genes regulating metastasis, invasion, and angiogenesis. Mol. Cell Biol. 33, 4985–4995 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dhingra, P. et al. Identification of novel prostate cancer drivers using RegNetDriver: a framework for integration of genetic and epigenetic alterations with tissue-specific regulatory network. Genome Biol. 18, 141 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prakash, O., Gill, J. & Farr, G. Immune disorders and susceptibility to neoplasms. Ochsner J. 4, 107–111 (2002).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zanetti, M., Xian, S., Dosset, M. & Carter, H. The unfolded protein response at the tumor-immune interface. Front. Immunol. 13, 823157 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cubillos-Ruiz, J. R. et al. ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis. Cell 161, 1527–1538 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cubillos-Ruiz, J. R., Bettigole, S. E. & Glimcher, L. H. Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer. Cell 168, 692–706 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hilligan, K. L. & Ronchese, F. Antigen presentation by dendritic cells and their instruction of CD4+ T helper cell responses. Cell Mol. Immunol. 17, 587–599 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahadevan, N. R., Fernandez, A., Rodvold, J. J., Almanza, G. & Zanetti, M. Prostate cancer cells undergoing ER stress in vitro and in vivo activate transcription of pro-inflammatory cytokines. J. Inflamm. Res. 3, 99–103 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Phan, T. G. & Croucher, P. I. The dormant cancer cell life cycle. Nat. Rev. Cancer 20, 398–411 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Paez, D. et al. Cancer dormancy: a model of early dissemination and late cancer recurrence. Clin. Cancer Res. 18, 645–653 (2012).

    PubMed 

    Google Scholar
     

  • Ranganathan, A. C., Zhang, L., Adam, A. P. & Aguirre-Ghiso, J. A. Functional coupling of p38-induced up-regulation of BiP and activation of RNA-dependent protein kinase-like endoplasmic reticulum kinase to drug resistance of dormant carcinoma cells. Cancer Res. 66, 1702–1711 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ranganathan, A. C., Ojha, S., Kourtidis, A., Conklin, D. S. & Aguirre-Ghiso, J. A. Dual function of pancreatic endoplasmic reticulum kinase in tumor cell growth arrest and survival. Cancer Res. 68, 3260–3268 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ranganathan, A. C., Adam, A. P., Zhang, L. & Aguirre-Ghiso, J. A. Tumor cell dormancy induced by p38SAPK and ER-stress signaling: an adaptive advantage for metastatic cells. Cancer Biol. Ther. 5, 729–735 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Amling, C. L. et al. Long-term hazard of progression after radical prostatectomy for clinically localized prostate cancer: continued risk of biochemical failure after 5 years. J. Urol. 164, 101–105 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Morrissey, C., Vessella, R. L., Lange, P. H. & Lam, H. M. The biology and clinical implications of prostate cancer dormancy and metastasis. J. Mol. Med. 94, 259–265 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Sekino, Y. & Teishima, J. Molecular mechanisms of docetaxel resistance in prostate cancer. Cancer Drug Resist. 3, 676–685 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fares, J., Fares, M. Y., Khachfe, H. H., Salhab, H. A. & Fares, Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal. Transduct. Target. Ther. 5, 28 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, H. et al. Activating transcription factor 4 promotes esophageal squamous cell carcinoma invasion and metastasis in mice and is associated with poor prognosis in human patients. PLoS ONE 9, e103882 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shiota, M. et al. Hsp27 regulates epithelial mesenchymal transition, metastasis, and circulating tumor cells in prostate cancer. Cancer Res. 73, 3109–3119 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Voll, E. A. et al. Heat shock protein 27 regulates human prostate cancer cell motility and metastatic progression. Oncotarget 5, 2648–2663 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rzymski, T. et al. The unfolded protein response controls induction and activation of ADAM17/TACE by severe hypoxia and ER stress. Oncogene 31, 3621–3634 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, L. J. et al. ADAM17 targets MMP-2 and MMP-9 via EGFR-MEK-ERK pathway activation to promote prostate cancer cell invasion. Int. J. Oncol. 40, 1714–1724 (2012).

    PubMed 

    Google Scholar
     

  • Ward, A. K. et al. Epigenetic silencing of CREB3L1 by DNA methylation is associated with high-grade metastatic breast cancers with poor prognosis and is prevalent in triple negative breast cancers. Breast Cancer Res. 18, 12 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, Y. X. et al. Cancer-specific PERK signaling drives invasion and metastasis through CREB3L1. Nat. Commun. 8, 1079 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Avivar-Valderas, A. et al. PERK integrates autophagy and oxidative stress responses to promote survival during extracellular matrix detachment. Mol. Cell Biol. 31, 3616–3629 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mao, C., Livezey, M., Kim, J. E. & Shapiro, D. J. Antiestrogen resistant cell lines expressing estrogen receptor α mutations upregulate the unfolded protein response and are killed by BHPI. Sci. Rep. 6, 34753 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shapiro, D. J., Livezey, M., Yu, L., Zheng, X. & Andruska, N. Anticipatory UPR activation: a protective pathway and target in cancer. Trends Endocrinol. Metab. 27, 731–741 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, N. et al. Pharmacological targeting of MYC-regulated IRE1/XBP1 pathway suppresses MYC-driven breast cancer. J. Clin. Invest. 128, 1283–1299 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, Y., Bolton, E. C. & Jones, J. O. Androgens and androgen receptor signaling in prostate tumorigenesis. J. Mol. Endocrinol. 54, R15–R29 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Aurilio, G. et al. Androgen receptor signaling pathway in prostate cancer: from genetics to clinical applications. Cells https://doi.org/10.3390/cells9122653 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, T., Karsh, L. I., Nissenblatt, M. J. & Canfield, S. E. Androgen receptor splice variant, AR-V7, as a biomarker of resistance to androgen axis-targeted therapies in advanced prostate cancer. Clin. Genitourin. Cancer 18, 1–10 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Karantanos, T., Corn, P. G. & Thompson, T. C. Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches. Oncogene 32, 5501–5511 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thorpe, J. A. & Schwarze, S. R. IRE1α controls cyclin A1 expression and promotes cell proliferation through XBP-1. Cell Stress Chaperones 15, 497–508 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Lonergan, P. E. & Tindall, D. J. Androgen receptor signaling in prostate cancer development and progression. J. Carcinog. 10, 20 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sheng, X. et al. IRE1α-XBP1s pathway promotes prostate cancer by activating c-MYC signaling. Nat. Commun. 10, 323 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Erzurumlu, Y. & Ballar, P. Androgen mediated regulation of endoplasmic reticulum-associated degradation and its effects on prostate cancer. Sci. Rep. 7, 40719 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, F., Yuan, C., Wu, D., Zhang, J. & Zhou, X. IRE1α expedites the progression of castration-resistant prostate cancers via the positive feedback loop of IRE1α/IL-6/AR. Front. Oncol. 11, 671141 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stelloo, S. et al. Androgen modulation of XBP1 is functionally driving part of the AR transcriptional program. Endocr. Relat. Cancer 27, 67–79 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Bai, S. et al. A positive role of c-Myc in regulating androgen receptor and its splice variants in prostate cancer. Oncogene 38, 4977–4989 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Q. et al. Androgen receptor and nutrient signaling pathways coordinate the demand for increased amino acid transport during prostate cancer progression. Cancer Res. 71, 7525–7536 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Jin, Y. et al. STAMP2 increases oxidative stress and is critical for prostate cancer. EMBO Mol. Med. 7, 315–331 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Overcash, R. F. et al. Androgen signaling promotes translation of TMEFF2 in prostate cancer cells via phosphorylation of the alpha subunit of the translation initiation factor 2. PLoS ONE 8, e55257 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petiwala, S. M. et al. Carnosic acid promotes degradation of the androgen receptor and is regulated by the unfolded protein response pathway in vitro and in vivo. Carcinogenesis 37, 827–838 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, G. et al. Gartanin, an isoprenylated xanthone from the mangosteen fruit (Garcinia mangostana), is an androgen receptor degradation enhancer. Mol. Nutr. Food Res. 60, 1458–1469 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Wadosky, K. M., Shourideh, M., Goodrich, D. W. & Koochekpour, S. Riluzole induces AR degradation via endoplasmic reticulum stress pathway in androgen-dependent and castration-resistant prostate cancer cells. Prostate 79, 140–150 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, X. et al. Endoplasmic reticulum stress inhibits AR expression via the PERK/eIF2α/ATF4 pathway in luminal androgen receptor triple-negative breast cancer and prostate cancer. NPJ Breast Cancer 8, 2 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pachikov, A. N. et al. The non-canonical mechanism of ER stress-mediated progression of prostate cancer. J. Exp. Clin. Cancer Res. 40, 289 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sreenath, T. L. et al. ETS related gene mediated androgen receptor aggregation and endoplasmic reticulum stress in prostate cancer development. Sci. Rep. 7, 1109 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, J. et al. Activation of UPR signaling pathway is associated with the malignant progression and poor prognosis in prostate cancer. Prostate 77, 274–281 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • So, A. Y., de la Fuente, E., Walter, P., Shuman, M. & Bernales, S. The unfolded protein response during prostate cancer development. Cancer Metastasis Rev. 28, 219–223 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Yang, J. et al. Metformin induces ER stress-dependent apoptosis through miR-708-5p/NNAT pathway in prostate cancer. Oncogenesis 4, e158 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahn, H. K., Lee, Y. H. & Koo, K. C. Current status and application of metformin for prostate cancer: a comprehensive review. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21228540 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, C. et al. Metformin exerts anti-AR-negative prostate cancer activity via AMPK/autophagy signaling pathway. Cancer Cell Int. 21, 404 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vinceti, M. et al. Selenium for preventing cancer. Cochrane Database Syst. Rev. 1, CD005195 (2018).

    PubMed 

    Google Scholar
     

  • Sayehmiri, K., Azami, M., Mohammadi, Y., Soleymani, A. & Tardeh, Z. The association between selenium and prostate cancer: a systematic review and meta-analysis. Asian Pac. J. Cancer Prev. 19, 1431–1437 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klein, E. A. et al. Vitamin E and the risk of prostate cancer: the selenium and vitamin E cancer prevention trial (SELECT). JAMA 306, 1549–1556 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Y., Zhang, H., Dong, Y., Park, Y. M. & Ip, C. Endoplasmic reticulum stress signal mediators are targets of selenium action. Cancer Res. 65, 9073–9079 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Zu, K. et al. Enhanced selenium effect on growth arrest by BiP/GRP78 knockdown in p53-null human prostate cancer cells. Oncogene 25, 546–554 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skrott, Z. et al. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature 552, 194–199 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Majera, D. et al. Targeting genotoxic and proteotoxic stress-response pathways in human prostate cancer by clinically available PARP inhibitors, vorinostat and disulfiram. Prostate 79, 352–362 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02671890 (2022).

  • US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04521335 (2022).

  • Sehgal, P. et al. Inhibition of the sarco/endoplasmic reticulum (ER) Ca2+-ATPase by thapsigargin analogs induces cell death via ER Ca2+ depletion and the unfolded protein response. J. Biol. Chem. 292, 19656–19673 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lindner, P., Christensen, S. B., Nissen, P., Moller, J. V. & Engedal, N. Cell death induced by the ER stressor thapsigargin involves death receptor 5, a non-autophagic function of MAP1LC3B, and distinct contributions from unfolded protein response components. Cell Commun. Signal. 18, 12 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aloysius, H. & Hu, L. Targeted prodrug approaches for hormone refractory prostate cancer. Med. Res. Rev. 35, 554–585 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Denmeade, S. R. et al. Prostate-specific antigen-activated thapsigargin prodrug as targeted therapy for prostate cancer. J. Natl Cancer Inst. 95, 990–1000 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Shiraishi, T. et al. Tunicamycin enhances tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human prostate cancer cells. Cancer Res. 65, 6364–6370 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Guha, P., Kaptan, E., Gade, P., Kalvakolanu, D. V. & Ahmed, H. Tunicamycin induced endoplasmic reticulum stress promotes apoptosis of prostate cancer cells by activating mTORC1. Oncotarget 8, 68191–68207 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hetz, C., Axten, J. M. & Patterson, J. B. Pharmacological targeting of the unfolded protein response for disease intervention. Nat. Chem. Biol. 15, 764–775 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Lu, T. et al. Knockdown of glucose-regulated protein 78/binding immunoglobulin heavy chain protein expression by asymmetric small interfering RNA induces apoptosis in prostate cancer cells and attenuates migratory capability. Mol. Med. Rep. 11, 249–256 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Backer, J. M. et al. Chaperone-targeting cytotoxin and endoplasmic reticulum stress-inducing drug synergize to kill cancer cells. Neoplasia 11, 1165–1173 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delie, F., Petignat, P. & Cohen, M. GRP78-targeted nanotherapy against castrate-resistant prostate cancer cells expressing membrane GRP78. Target. Oncol. 8, 225–230 (2013).

    PubMed 

    Google Scholar
     

  • Elfiky, A. A., Baghdady, A. M., Ali, S. A. & Ahmed, M. I. GRP78 targeting: hitting two birds with a stone. Life Sci. 260, 118317 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mandelin, J. et al. Selection and identification of ligand peptides targeting a model of castrate-resistant osteogenic prostate cancer and their receptors. Proc. Natl Acad. Sci. USA 112, 3776–3781 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferrara, F. et al. Targeted molecular-genetic imaging and ligand-directed therapy in aggressive variant prostate cancer. Proc. Natl Acad. Sci. USA 113, 12786–12791 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burikhanov, R. et al. The tumor suppressor Par-4 activates an extrinsic pathway for apoptosis. Cell 138, 377–388 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. et al. Codelivery of GRP78 siRNA and docetaxel via RGD-PEG-DSPE/DOPA/CaP nanoparticles for the treatment of castration-resistant prostate cancer. Drug Des. Devel. Ther. 13, 1357–1372 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoter, A., Rizk, S. & Naim, H. Y. The multiple roles and therapeutic potential of molecular chaperones in prostate cancer. Cancers https://doi.org/10.3390/cancers11081194 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eccles, S. A. et al. NVP-AUY922: a novel heat shock protein 90 inhibitor active against xenograft tumor growth, angiogenesis, and metastasis. Cancer Res. 68, 2850–2860 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Rocchi, P. et al. Heat shock protein 27 increases after androgen ablation and plays a cytoprotective role in hormone-refractory prostate cancer. Cancer Res. 64, 6595–6602 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Rocchi, P. et al. Increased Hsp27 after androgen ablation facilitates androgen-independent progression in prostate cancer via signal transducers and activators of transcription 3-mediated suppression of apoptosis. Cancer Res. 65, 11083–11093 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Solit, D. B. et al. 17-Allylamino-17-demethoxygeldanamycin induces the degradation of androgen receptor and HER-2/neu and inhibits the growth of prostate cancer xenografts. Clin. Cancer Res. 8, 986–993 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Saporita, A. J., Ai, J. & Wang, Z. The Hsp90 inhibitor, 17-AAG, prevents the ligand-independent nuclear localization of androgen receptor in refractory prostate cancer cells. Prostate 67, 509–520 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, S. et al. Potent activity of the Hsp90 inhibitor ganetespib in prostate cancer cells irrespective of androgen receptor status or variant receptor expression. Int. J. Oncol. 42, 35–43 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Thakur, M. K. et al. A phase II trial of ganetespib, a heat shock protein 90 Hsp90) inhibitor, in patients with docetaxel-pretreated metastatic castrate-resistant prostate cancer (CRPC) — a prostate cancer clinical trials consortium (PCCTC) study. Invest. New Drugs 34, 112–118 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Moon, S. J. et al. Bruceantin targets HSP90 to overcome resistance to hormone therapy in castration-resistant prostate cancer. Theranostics 11, 958–973 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rocchi, P. et al. Small interference RNA targeting heat-shock protein 27 inhibits the growth of prostatic cell lines and induces apoptosis via caspase-3 activation in vitro. BJU Int. 98, 1082–1089 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Kumano, M. et al. Cotargeting stress-activated Hsp27 and autophagy as a combinatorial strategy to amplify endoplasmic reticular stress in prostate cancer. Mol. Cancer Ther. 11, 1661–1671 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, E. Y. et al. A randomized phase 2 study of a HSP27 targeting antisense, apatorsen with prednisone versus prednisone alone, in patients with metastatic castration resistant prostate cancer. Invest. N. Drugs 36, 278–287 (2018).

    CAS 

    Google Scholar
     

  • Lamoureux, F. et al. Suppression of heat shock protein 27 using OGX-427 induces endoplasmic reticulum stress and potentiates heat shock protein 90 inhibitors to delay castrate-resistant prostate cancer. Eur. Urol. 66, 145–155 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Maly, D. J. & Papa, F. R. Druggable sensors of the unfolded protein response. Nat. Chem. Biol. 10, 892–901 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ri, M. et al. Identification of toyocamycin, an agent cytotoxic for multiple myeloma cells, as a potent inhibitor of ER stress-induced XBP1 mRNA splicing. Blood Cancer J. 2, e79 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanches, M. et al. Structure and mechanism of action of the hydroxy-aryl-aldehyde class of IRE1 endoribonuclease inhibitors. Nat. Commun. 5, 4202 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Atkins, C. et al. Characterization of a novel PERK kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res. 73, 1993–2002 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Marciniak, S. J., Chambers, J. E. & Ron, D. Pharmacological targeting of endoplasmic reticulum stress in disease. Nat. Rev. Drug Discov. https://doi.org/10.1038/s41573-021-00320-3 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Sidrauski, C. et al. Pharmacological brake-release of mRNA translation enhances cognitive memory. Elife 2, e00498 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rabouw, H. H. et al. Small molecule ISRIB suppresses the integrated stress response within a defined window of activation. Proc. Natl Acad. Sci. USA 116, 2097–2102 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maltais, R. et al. Induction of endoplasmic reticulum stress-mediated apoptosis by aminosteroid RM-581 efficiently blocks the growth of PC-3 cancer cells and tumors resistant or not to docetaxel. Int. J. Mol. Sci. https://doi.org/10.3390/ijms222011181 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan, B., Jia, R., Wang, G. & Yang, J. Astragaloside attenuates the progression of prostate cancer cells through endoplasmic reticulum stress pathways. Oncol. Lett. 16, 3901–3906 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, J. et al. A novel deubiquitinase inhibitor b-AP15 triggers apoptosis in both androgen receptor-dependent and -independent prostate cancers. Oncotarget 8, 63232–63246 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kobylewski, S. E., Henderson, K. A., Yamada, K. E. & Eckhert, C. D. Activation of the EIF2alpha/ATF4 and ATF6 pathways in DU-145 cells by boric acid at the concentration reported in men at the US mean boron intake. Biol. Trace Elem. Res. 176, 278–293 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Sanchez, A. M. et al. Induction of the endoplasmic reticulum stress protein GADD153/CHOP by capsaicin in prostate PC-3 cells: a microarray study. Biochem. Biophys. Res. Commun. 372, 785–791 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Evelyn, C. R. et al. Small-molecule inhibition of Rho/MKL/SRF transcription in prostate cancer cells: modulation of cell cycle, ER stress, and metastasis gene networks. Microarrays https://doi.org/10.3390/microarrays5020013 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, W. B. et al. Paraptosis accompanied by autophagy and apoptosis was induced by celastrol, a natural compound with influence on proteasome, ER stress and Hsp90. J. Cell Physiol. 227, 2196–2206 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Kim, H. K. et al. Chalcone suppresses tumor growth through NOX4-IRE1α sulfonation-RIDD-miR-23b axis. Redox Biol. 40, 101853 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, S. et al. Chelerythrine induced cell death through ROS-dependent ER stress in human prostate cancer cells. Onco Targets Ther. 11, 2593–2601 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ryu, S., Lim, W., Bazer, F. W. & Song, G. Chrysin induces death of prostate cancer cells by inducing ROS and ER stress. J. Cell Physiol. 232, 3786–3797 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Fan, L. et al. Clofoctol and sorafenib inhibit prostate cancer growth via synergistic induction of endoplasmic reticulum stress and UPR pathways. Cancer Manag. Res. 10, 4817–4829 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, M. et al. Identification of an old antibiotic clofoctol as a novel activator of unfolded protein response pathways and an inhibitor of prostate cancer. Br. J. Pharmacol. 171, 4478–4489 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, B. et al. Corosolic acid, a natural triterpenoid, induces ER stress-dependent apoptosis in human castration resistant prostate cancer cells via activation of IRE-1/JNK, PERK/CHOP and TRIB3. J. Exp. Clin. Cancer Res. 37, 210 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, W. J. et al. Nonautophagic cytoplasmic vacuolation death induction in human PC-3M prostate cancer by curcumin through reactive oxygen species -mediated endoplasmic reticulum stress. Sci. Rep. 5, 10420 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rivera, M. et al. Targeting multiple pro-apoptotic signaling pathways with curcumin in prostate cancer cells. PLoS ONE 12, e0179587 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pak, S. et al. The small molecule WNT/beta-catenin inhibitor CWP232291 blocks the growth of castration-resistant prostate cancer by activating the endoplasmic reticulum stress pathway. J. Exp. Clin. Cancer Res. 38, 342 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nawasreh, M. M. et al. Biological activity and apoptotic signaling pathway of C11-functionalized cephalostatin 1 analogues. Steroids 158, 108602 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Yang, D. L. et al. Demethylzeylasteral (T-96) initiates extrinsic apoptosis against prostate cancer cells by inducing ROS-mediated ER stress and suppressing autophagic flux. Biol. Res. 54, 27 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, S. et al. Endoplasmic reticulum stress as a correlate of cytotoxicity in human tumor cells exposed to diindolylmethane in vitro. Cell Stress. Chaperones 9, 76–87 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanchez, M. et al. Oxidized analogs of Di(1H-indol-3-yl)methyl-4-substituted benzenes are NR4A1-dependent UPR inducers with potent and safe anti-cancer activity. Oncotarget 9, 25057–25074 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsumoto, T. et al. Doxycycline induces apoptosis via ER stress selectively to cells with a cancer stem cell-like properties: importance of stem cell plasticity. Oncogenesis 6, 397 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tao, T. et al. Fenofibrate inhibits the growth of prostate cancer through regulating autophagy and endoplasmic reticulum stress. Biochem. Biophys. Res. Commun. 503, 2685–2689 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Sapili, H., Ho, C. S., Malagobadan, S., Arshad, N. M. & Nagoor, N. H. Geranylated 4-phenylcoumarins extracted from Mesua elegans induced caspase-independent cell death in prostate cancer cell lines through calpain-2 and cathepsin B. Sci. Rep. 10, 986 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, C., Chesnokov, V., Larson, G. & Itakura, K. Glucosamine enhances TRAIL-induced apoptosis in the prostate cancer cell line DU145. Medicines https://doi.org/10.3390/medicines6040104 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, M. G. et al. Heteronemin, a marine sesterterpenoid-type metabolite, induces apoptosis in prostate LNcap cells via oxidative and ER stress combined with the inhibition of topoisomerase II and Hsp90. Mar. Drugs https://doi.org/10.3390/md16060204 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, H. et al. Isoalantolactone increases the sensitivity of prostate cancer cells to cisplatin treatment by inducing oxidative stress. Front. Cell Dev. Biol. 9, 632779 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, W. et al. Isoalantolactone induces apoptosis through ROS-mediated ER stress and inhibition of STAT3 in prostate cancer cells. J. Exp. Clin. Cancer Res. 37, 309 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, K. et al. Isobavachalcone induces ROS-mediated apoptosis via targeting thioredoxin reductase 1 in human prostate cancer PC-3 cells. Oxid. Med. Cell Longev. 2018, 1915828 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, M. J. et al. In vitro anticancer effects of JI017 on two prostate cancer cell lines involve endoplasmic reticulum stress mediated by elevated levels of reactive oxygen species. Front. Pharmacol. 12, 683575 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gafar, A. A. et al. Lithocholic acid induces endoplasmic reticulum stress, autophagy and mitochondrial dysfunction in human prostate cancer cells. PeerJ 4, e2445 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, H. Y. et al. The anti-proliferative activity of secondary metabolite from the marine streptomyces sp. against prostate cancer cells. Life https://doi.org/10.3390/life11121414 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, G., Petiwala, S. M., Pierce, D. R., Nonn, L. & Johnson, J. J. Selective modulation of endoplasmic reticulum stress markers in prostate cancer cells by a standardized mangosteen fruit extract. PLoS ONE 8, e81572 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, H. et al. Marchantin M: a novel inhibitor of proteasome induces autophagic cell death in prostate cancer cells. Cell Death Dis. 4, e761 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, T. W., Xing, L., Tang, J. L., Lu, J. X. & Liu, C. X. Marchantin M induces apoptosis of prostate cancer cells through endoplasmic reticulum stress. Med. Sci. Monit. 21, 3570–3576 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, J. et al. Matrine inhibits prostate cancer via activation of the unfolded protein response/endoplasmic reticulum stress signaling and reversal of epithelial to mesenchymal transition. Mol. Med. Rep. 18, 945–957 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Afolabi, S. O. et al. Polyalthia longifolia extract triggers ER stress in prostate cancer cells concomitant with induction of apoptosis: insights from in vitro and in vivo studies. Oxid. Med. Cell Longev. 2019, 6726312 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiu, H. W. et al. Monascuspiloin enhances the radiation sensitivity of human prostate cancer cells by stimulating endoplasmic reticulum stress and inducing autophagy. PLoS ONE 7, e40462 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burton, L. J. et al. Muscadine grape skin extract induces an unfolded protein response-mediated autophagy in prostate cancer cells: a TMT-based quantitative proteomic analysis. PLoS ONE 11, e0164115 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiu, S. C. et al. Induction of apoptosis coupled to endoplasmic reticulum stress in human prostate cancer cells by n-butylidenephthalide. PLoS ONE 7, e33742 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guan, M., Su, L., Yuan, Y. C., Li, H. & Chow, W. A. Nelfinavir and nelfinavir analogs block site-2 protease cleavage to inhibit castration-resistant prostate cancer. Sci. Rep. 5, 9698 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, M. H. et al. Norcantharidin combined with paclitaxel induces endoplasmic reticulum stress mediated apoptotic effect in prostate cancer cells by targeting SIRT7 expression. Env. Toxicol. 36, 2206–2216 (2021).

    CAS 

    Google Scholar
     

  • Wang, L. et al. Dissociation of NSC606985 induces atypical ER-stress and cell death in prostate cancer cells. Int. J. Oncol. 49, 529–538 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Chang, Y. M. et al. Ouabain induces apoptotic cell death in human prostate DU 145 cancer cells through DNA damage and TRAIL pathways. Env. Toxicol. 34, 1329–1339 (2019).

    CAS 

    Google Scholar
     

  • Huang, H. et al. Plumbagin triggers ER stress-mediated apoptosis in prostate cancer cells via induction of ROS. Cell Physiol. Biochem. 45, 267–280 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Rizzi, F. et al. Polyphenon E®, a standardized green tea extract, induces endoplasmic reticulum stress, leading to death of immortalized PNT1a cells by anoikis and tumorigenic PC3 by necroptosis. Carcinogenesis 35, 828–839 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, F. et al. Proscillaridin A slows the prostate cancer progression through triggering the activation of endoplasmic reticulum stress. Cell Cycle 19, 541–550 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huong, P. T. et al. Proteasome inhibitor-I enhances tunicamycin-induced chemosensitization of prostate cancer cells through regulation of NF-κB and CHOP expression. Cell Signal. 23, 857–865 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X. et al. Quercetin enhanced paclitaxel therapeutic effects towards PC-3 prostate cancer through ER stress induction and ROS production. Onco Targets Ther. 13, 513–523 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Selvaraj, S., Sun, Y., Sukumaran, P. & Singh, B. B. Resveratrol activates autophagic cell death in prostate cancer cells via downregulation of STIM1 and the mTOR pathway. Mol. Carcinog. 55, 818–831 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Yu, J., Yang, Y., Li, S. & Meng, P. Salinomycin triggers prostate cancer cell apoptosis by inducing oxidative and endoplasmic reticulum stress via suppressing Nrf2 signaling. Exp. Ther. Med. 22, 946 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Salinomycin triggers endoplasmic reticulum stress through ATP2A3 upregulation in PC-3 cells. BMC Cancer 19, 381 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gara, R. K. et al. Shikonin selectively induces apoptosis in human prostate cancer cells through the endoplasmic reticulum stress and mitochondrial apoptotic pathway. J. Biomed. Sci. 22, 26 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, S. H. et al. Silibinin induces mitochondrial NOX4-mediated endoplasmic reticulum stress response and its subsequent apoptosis. BMC Cancer 16, 452 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, J. H. & Kraft, A. S. Pim kinase inhibitors sensitize prostate cancer cells to apoptosis triggered by Bcl-2 family inhibitor ABT-737. Cancer Res. 72, 294–303 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Nagesh, P. K. B. et al. Tannic acid induces endoplasmic reticulum stress-mediated apoptosis in prostate cancer. Cancers https://doi.org/10.3390/cancers10030068 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiu, S. C. et al. Tanshinone IIA inhibits human prostate cancer cells growth by induction of endoplasmic reticulum stress in vitro and in vivo. Prostate Cancer Prostatic Dis. 16, 315–322 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Grayson, K. A., Hope, J. M., Wang, W., Reinhart-King, C. A. & King, M. R. Taxanes sensitize prostate cancer cells to TRAIL-induced apoptotic synergy via endoplasmic reticulum stress. Mol. Cancer Ther. 20, 833–845 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Xu, Q. et al. Hyper-acetylation contributes to the sensitivity of chemo-resistant prostate cancer cells to histone deacetylase inhibitor Trichostatin A. J. Cell Mol. Med. 22, 1909–1922 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, F. et al. Triptolide induces protective autophagy through activation of the CaMKKβ-AMPK signaling pathway in prostate cancer cells. Oncotarget 7, 5366–5382 (2016).

    PubMed 

    Google Scholar
     

  • Yang, J. B. et al. Tubeimoside-1 induces oxidative stress-mediated apoptosis and G0/G1 phase arrest in human prostate carcinoma cells in vitro. Acta Pharmacol. Sin. 37, 950–962 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bruno, R. D., Gover, T. D., Burger, A. M., Brodie, A. M. & Njar, V. C. 17α-Hydroxylase/17,20 lyase inhibitor VN/124-1 inhibits growth of androgen-independent prostate cancer cells via induction of the endoplasmic reticulum stress response. Mol. Cancer Ther. 7, 2828–2836 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, H. et al. A novel small-molecule activator of unfolded protein response suppresses castration-resistant prostate cancer growth. Cancer Lett. 532, 215580 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Hessenauer, A., Schneider, C. C., Gotz, C. & Montenarh, M. CK2 inhibition induces apoptosis via the ER stress response. Cell Signal. 23, 145–151 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Hsieh, C. L. et al. A novel salicylanilide derivative induces autophagy cell death in castration-resistant prostate cancer via ER stress-activated PERK signaling pathway. Mol. Cancer Ther. 19, 101–111 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Fontana, F. et al. δ-Tocotrienol induces apoptosis, involving endoplasmic reticulum stress and autophagy, and paraptosis in prostate cancer cells. Cell Prolif. 52, e12576 (2019).

    PubMed 
    PubMed Central 

    Google Scholar