Categories
Prostate cancer

Identification of a high-risk immunogenic prostate cancer patient subset as candidates for T-cell engager immunotherapy and the introduction of a novel albumin-fused anti-CD3 × anti-PSMA bispecific design

  • Parker C, Castro E, Fizazi K, Heidenreich A, Ost P, Procopio G, et al. Prostate cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Annal Oncol. 2020;31:1119–34.

    CAS 
    Article 

    Google Scholar
     

  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.

  • Kolodziej M. Management of biochemically recurrent prostate cancer following local therapy. Am J Managed Care. 2014;20:S273–81.


    Google Scholar
     

  • Lin X, Kapoor A, Gu Y, Chow MJ, Xu H, Major P, et al. Assessment of biochemical recurrence of prostate cancer (review). Int J Oncol. 2019;55:1194–212.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He L, Fang H, Chen C, Wu Y, Wang Y, Ge H, et al. Metastatic castration-resistant prostate cancer: academic insights and perspectives through bibliometric analysis. Medicine. 2020;99:e19760.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. New Engl J Med. 2012;366:2443–54.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gulley JL, Borre M, Vogelzang NJ, Ng S, Agarwal N, Parker CC, et al. Phase III trial of PROSTVAC in asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer. J Clin Oncol. 2019;37:1051–61.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kwon ED, Drake CG, Scher HI, Fizazi K, Bossi A, van den Eertwegh AJ, et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2014;15:700–12.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bou-Dargham MJ, Sha L, Sang Q-XA, Zhang J. Immune landscape of human prostate cancer: immune evasion mechanisms and biomarkers for personalized immunotherapy. BMC Cancer. 2020;20:572.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ellerman D. Bispecific T-cell engagers: towards understanding variables influencing the in vitro potency and tumor selectivity and their modulation to enhance their efficacy and safety. Methods. 2019;154:102–17.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Baeuerle PA, Kufer P, Bargou R. BiTE: teaching antibodies to engage T-cells for cancer therapy. Curr Opin Mol Therapeut. 2009;11:22–30.

    CAS 

    Google Scholar
     

  • Wolf E, Hofmeister R, Kufer P, Schlereth B, Baeuerle PA. BiTEs: bispecific antibody constructs with unique anti-tumor activity. Drug Discov Today. 2005;10:1237–44.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yuraszeck T, Bartlett D, Singh I, Reed M, Pagano S, Zhu M. A quantitative systems pharmacology (QSP) model to assess the action of blinatumomab in NHL patients (pts). Clin Oncol. 2016;34:e14511.

  • Belmontes B, Sawant DV, Zhong W, Tan H, Kaul A, Aeffner F, et al. Immunotherapy combinations overcome resistance to bispecific T cell engager treatment in T cell–cold solid tumors. Sci Transl Med. 2021;13:eabd1524.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Newman MJ, Benani DJ. A review of blinatumomab, a novel immunotherapy. J Oncol Pharmacy Practice. 2016;22:639–45.

    CAS 
    Article 

    Google Scholar
     

  • Kang TH, Jung ST. Boosting therapeutic potency of antibodies by taming Fc domain functions. Exp Mol Med. 2019;51:1–9.

    PubMed 

    Google Scholar
     

  • Portell CA, Wenzell CM, Advani AS. Clinical and pharmacologic aspects of blinatumomab in the treatment of B-cell acute lymphoblastic leukemia. Clin Pharmacol. 2013;5:5–11.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmidt EGW, Hvam ML, Antunes F, Cameron J, Viuff D, Andersen B, et al. Direct demonstration of a neonatal Fc receptor (FcRn)-driven endosomal sorting pathway for cellular recycling of albumin. J Biol Chemistry. 2017;292:13312–22.

    CAS 
    Article 

    Google Scholar
     

  • Larsen MT, Kuhlmann M, Hvam ML, Howard KA. Albumin-based drug delivery: harnessing nature to cure disease. Mol Cell Ther. 2016;4:3.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pilati D, Howard KA. Albumin-based drug designs for pharmacokinetic modulation. Expert Opin Drug Metabol Toxicol. 2020;16:783–95.

    CAS 
    Article 

    Google Scholar
     

  • Andersen JT, Dalhus B, Viuff D, Ravn BT, Gunnarsen KS, Plumridge A, et al. Extending serum half-life of albumin by engineering neonatal Fc receptor (FcRn) binding*. J Biol Chemistry. 2014;289:13492–502.

    CAS 
    Article 

    Google Scholar
     

  • Mandrup OA, Ong SC, Lykkemark S, Dinesen A, Rudnik-Jansen I, Dagnæs-Hansen NF, et al. Programmable half-life and anti-tumour effects of bispecific T-cell engager-albumin fusions with tuned FcRn affinity. Commun Biol. 2021;4:310.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Silver DA, Pellicer I, Fair WR, Heston WD, Cordon-Cardo C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res. 1997;3:81–5.

    CAS 
    PubMed 

    Google Scholar
     

  • Heck MM, Retz M, Tauber R, Knorr K, Kratochwil C, Eiber M. [PSMA-targeted radioligand therapy in prostate cancer]. Der Urologe Ausg A. 2017;56:32–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hofman MS, Emmett L, Sandhu S, Iravani A, Joshua AM, Goh JC, et al. [177Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial. Lancet. 2021;397:797–804.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Heitmann JS, Walz JS, Pflügler M, Kauer J, Schlenk RF, Jung G, et al. Protocol of a prospective, multicentre phase I study to evaluate the safety, tolerability and preliminary efficacy of the bispecific PSMAxCD3 antibody CC-1 in patients with castration-resistant prostate carcinoma. BMJ Open. 2020;10:e039639.

  • Buelow B, Dalvi P, Dang K, Patel A, Johal K, Pham D, et al. TNB585.001: a multicenter, phase 1, open-label, dose-escalation and expansion study of tnb-585, a bispecific T-cell engager targeting PSMA in subjects with metastatic castrate resistant prostate cancer. Clin Oncol. 2021;39:TPS5092-TPS.

  • Markowski MC, Kilari D, Eisenberger MA, McKay RR, Dreicer R, Trikha M, et al. Phase I study of CCW702, a bispecific small molecule-antibody conjugate targeting PSMA and CD3 in patients with metastatic castration-resistant prostate cancer (mCRPC). Clin Oncol. 2021;39:TPS5094-TPS.

  • Tran B, Horvath L, Dorff TB, Greil R, Machiels J-PH, Roncolato F, et al. Phase I study of AMG 160, a half-life extended bispecific T-cell engager (HLE BiTE) immune therapy targeting prostate-specific membrane antigen (PSMA), in patients with metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol. 2020;38:TPS261–TPS.

    Article 

    Google Scholar
     

  • Kamat NV, Yu EY, Lee JK. BiTE-ing into prostate cancer with bispecific T-cell engagers. Clin Cancer Res. 2021;27:2675–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Deegen P, Thomas O, Nolan-Stevaux O, Li S, Wahl J, Bogner P, et al. The PSMA-targeting half-life extended BiTE therapy AMG 160 has potent antitumor activity in preclinical models of metastatic castration-resistant prostate cancer. Clin Cancer Res. 2021;27:2928.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tran B, Horvath L, Dorff T, Rettig M, Lolkema MP, Machiels JP, et al. 609 O Results from a phase I study of AMG 160, a half-life extended (HLE), PSMA-targeted, bispecific T-cell engager (BiTE®) immune therapy for metastatic castration-resistant prostate cancer (mCRPC). Annal Oncol. 2020;31:S507.

    Article 

    Google Scholar
     

  • Middelburg J, Kemper K, Engelberts P, Labrijn AF, Schuurman J, van Hall T. Overcoming challenges for CD3-bispecific antibody therapy in solid tumors. Cancers. 2021;13:287.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hansen EB, Fredsøe J, Okholm TLH, Ulhøi BP, Klingenberg S, Jensen JB, et al. The transcriptional landscape and biomarker potential of circular RNAs in prostate cancer. Genome Med. 2022;14:8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Salachan PV, Rasmussen M, Fredsøe J, Ulhøi B, Borre M, Sørensen KD. Microbiota of the prostate tumor environment investigated by whole-transcriptome profiling. Genome Med. 2022;14:9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34:525–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Soneson C, Love MI and Robinson MD. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences [version 2; peer review: 2 approved]. F1000Research 2016;4:1521.

  • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2009;26:139–40.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 2017;18:220.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ståhl PL, Salmén F, Vickovic S, Lundmark A, Navarro JF, Magnusson J, et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science. 2016;353:78–82.

    PubMed 
    Article 

    Google Scholar
     

  • R Core Team (2018). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2018; https://www.R-project.org/.

  • Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler A, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184:3573–87. e29

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yan L. ggvenn: Draw Venn Diagram by ‘ggplot2’. R package version 0.1.9 ed2021. Available from https://CRAN.R-project.org/package=ggvenn.

  • Kassambara A, Kosinski M, Biecek P. survminer: Drawing Survival Curves using ‘ggplot2’. 2021. R package version 0.4.9. Available from https://CRAN.R-project.org/package=survminer.

  • Rey D, Neuhäuser M. Wilcoxon-signed-rank test. In: Lovric M, editor. International Encyclopedia of Statistical Science. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011. p. 1658–9.

  • Sprent P. Fisher Exact test. In: Lovric M, editor. International Encyclopedia of Statistical Science. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011. p. 524–5.

  • Freedman DR, Pisani R, Purves R. Statistics (international student edition). Chapter 8: Correlation. In: Pisani, R Purves, editors. 4th edn. New York: WW Norton & Company; 2007.

  • Abeshouse A, Ahn J, Akbani R, Ally A, Amin S, Andry CD, et al. The molecular taxonomy of primary prostate cancer. Cell. 2015;163:1011–25.

  • Zhu Y, Qiu P, Ji Y. TCGA-assembler: open-source software for retrieving and processing TCGA data. Nat Methods. 2014;11:599–600.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schmidt L, Møller M, Haldrup C, Strand SH, Vang S, Hedegaard J, et al. Exploring the transcriptome of hormone-naive multifocal prostate cancer and matched lymph node metastases. Br J Cancer. 2018;119:1527–37.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cooperberg MR, Hilton JF, Carroll PR. The CAPRA-S score: a straightforward tool for improved prediction of outcomes after radical prostatectomy. Cancer. 2011;117:5039–46.

    PubMed 
    Article 

    Google Scholar
     

  • Yang Y, Attwood K, Bshara W, Mohler JL, Guru K, Xu B, et al. High intratumoral CD8( + ) T-cell infiltration is associated with improved survival in prostate cancer patients undergoing radical prostatectomy. Prostate. 2021;81:20–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • McArdle PA, Canna K, McMillan DC, McNicol AM, Campbell R, Underwood MA. The relationship between T-lymphocyte subset infiltration and survival in patients with prostate cancer. Br J Cancer. 2004;91:541–3.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ness N, Andersen S, Valkov A, Nordby Y, Donnem T, Al-Saad S, et al. Infiltration of CD8 + lymphocytes is an independent prognostic factor of biochemical failure-free survival in prostate cancer. Prostate. 2014;74:1452–61.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bougherara H, Mansuet-Lupo A, Alifano M, Ngô C, Damotte D, Le Frère-Belda M-A, et al. Real-time imaging of resident T cells in human lung and ovarian carcinomas reveals how different tumor microenvironments control T lymphocyte migration. Front Immunol. 2015;6:500.

  • Hendry S, Salgado R, Gevaert T, Russell PA, John T, Thapa B, et al. Assessing tumor-infiltrating lymphocytes in solid tumors: a practical review for pathologists and proposal for a standardized method from the international immuno-oncology biomarkers working group: part 2: TILs in melanoma, gastrointestinal tract carcinomas, non-small cell lung carcinoma and mesothelioma, endometrial and ovarian carcinomas, squamous cell carcinoma of the head and neck, genitourinary carcinomas, and primary brain tumors. Adv Anat Pathol. 2017;24:311–35.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357:409–13.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Smyrk TC, Watson P, Kaul K, Lynch HT. Tumor-infiltrating lymphocytes are a marker for microsatellite instability in colorectal carcinoma. Cancer. 2001;91:2417–22.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Froehner M, Koch R, Graefen M. Re: Nicolas Mottet, Roderick C.N. van den Bergh, Erik Briers, et al. EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer-2020 update. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol 2021;79:243-62: comorbidity measurement in patients with prostate cancer. Eur Urol. 2021;79:e138.

    PubMed 
    Article 

    Google Scholar
     

  • Sommer U, Ebersbach C, Beier AK, Baretton GB, Thomas C, Borkowetz A, et al. Influence of androgen deprivation therapy on the PD-L1 expression and immune activity in prostate cancer tissue. Front Mol Biosci. 2022;9:878353.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Arija JAA, Valderrama BP, Gordoa TA, Diaz EG, Sanchez JMS, Fernandez-Parra E, et al. 894TiP – PROSTRATEGY: a Spanish Genitourinary Oncology Group (SOGUG) multi-arm multistage (MAMS) phase III trial of immunotherapy strategies in high-volume metastatic hormone-sensitive prostate cancer. Annal Oncol. 2019;30:v352–v3.

    Article 

    Google Scholar
     

  • Ströhlein MA, Lefering R, Bulian DR, Heiss MM. Relative lymphocyte count is a prognostic parameter in cancer patients with catumaxomab immunotherapy. Medical Hypotheses. 2014;82:295–9.

    PubMed 
    Article 

    Google Scholar
     

  • Lee JS, Ruppin E. Multiomics prediction of response rates to therapies to inhibit programmed cell death 1 and programmed cell death 1 ligand 1. JAMA Oncol. 2019;5:1614–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Graff JN, Alumkal JJ, Drake CG, Thomas GV, Redmond WL, Farhad M, et al. Early evidence of anti-PD-1 activity in enzalutamide-resistant prostate cancer. Oncotarget. 2016;7:52810–7.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Queisser A, Hagedorn SA, Braun M, Vogel W, Duensing S, Perner S. Comparison of different prostatic markers in lymph node and distant metastases of prostate cancer. Modern Pathol. 2015;28:138–45.

    CAS 
    Article 

    Google Scholar
     

  • Wright GL Jr., Haley C, Beckett ML, Schellhammer PF. Expression of prostate-specific membrane antigen in normal, benign, and malignant prostate tissues. Urologic Oncol. 1995;1:18–28.

    Article 

    Google Scholar
     

  • Sartor O, de Bono J, Chi KN, Fizazi K, Herrmann K, Rahbar K, et al. Lutetium-177–PSMA-617 for metastatic castration-resistant prostate cancer. New Engl J Med. 2021;385:1091–103.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vafa O, Gilliland GL, Brezski RJ, Strake B, Wilkinson T, Lacy ER, et al. An engineered Fc variant of an IgG eliminates all immune effector functions via structural perturbations. Methods. 2014;65:114–26.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schlothauer T, Herter S, Koller CF, Grau-Richards S, Steinhart V, Spick C, et al. Novel human IgG1 and IgG4 Fc-engineered antibodies with completely abolished immune effector functions. Protein Eng Design Selection. 2016;29:457–66.

    CAS 
    Article 

    Google Scholar
     

  • Bern M, Nilsen J, Ferrarese M, Sand KMK, Gjølberg TT, Lode HE, et al. An engineered human albumin enhances half-life and transmucosal delivery when fused to protein-based biologics. Sci Transl Med. 2020;12:eabb0580.

  • Expression Atlas: gene and protein expression across multiple studies and organisms: PC-3 and DU-145 [cited 2022 1702]. https://www.ebi.ac.uk/gxa/experiments/E-MTAB-2770/Results?specific=true&geneQuery=%255B%257B%2522value%2522%253A%2522FCGRT%2522%252C%2522category%2522%253A%2522symbol%2522%257D%255D&filterFactors=%257B%2522CELL_LINE%2522%253A%255B%2522DU%2520145%2522%252C%2522PC-3%2522%255D%257D&cutoff=%257B%2522value%2522%253A0.5%257D&unit=%2522TPM%2522.

  • Viuff D, Antunes F, Evans L, Cameron J, Dyrnesli H, Thue Ravn B, et al. Generation of a double transgenic humanized neonatal Fc receptor (FcRn)/albumin mouse to study the pharmacokinetics of albumin-linked drugs. J Controlled Release. 2016;223:22–30.

    CAS 
    Article 

    Google Scholar
     

  • Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387–92.

    CAS 
    PubMed 

    Google Scholar
     

  • Desai N, Trieu V, Yao Z, Louie L, Ci S, Yang A, et al. Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin Cancer Res. 2006;12:1317–24.

    CAS 
    PubMed 
    Article 

    Google Scholar