Categories
Prostate cancer

Neuropilin-2 promotes lineage plasticity and progression to neuroendocrine prostate cancer

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    PubMed 

    Google Scholar
     

  • Aparicio A, Logothetis CJ, Maity SN. Understanding the lethal variant of prostate cancer: power of examining extremes. Cancer Discov. 2011;1:466–8.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Beltran H, Tomlins S, Aparicio A, Arora V, Rickman D, Ayala G, et al. Aggressive variants of castration-resistant prostate cancer. Clin Cancer Res. 2014;20:2846–50.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang HT, Yao YH, Li BG, Tang Y, Chang JW, Zhang J. Neuroendocrine Prostate Cancer (NEPC) progressing from conventional prostatic adenocarcinoma: factors associated with time to development of NEPC and survival from NEPC diagnosis-a systematic review and pooled analysis. J Clin Oncol. 2014;32:3383–90.

    PubMed 
    Article 

    Google Scholar
     

  • Davies AH, Beltran H, Zoubeidi A. Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nat Rev Urol. 2018;15:271–86.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ellis LM. The role of neuropilins in cancer. Mol Cancer Ther. 2006;5:1099–107.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rizzolio S, Tamagnone L. Multifaceted role of neuropilins in cancer. Curr Med Chem. 2011;18:3563–75.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Borkowetz A, Froehner M, Rauner M, Conrad S, Erdmann K, Mayr T, et al. Neuropilin-2 is an independent prognostic factor for shorter cancer-specific survival in patients with acinar adenocarcinoma of the prostate. Int J Cancer. 2020;146:2619–27.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Goel HL, Chang C, Pursell B, Leav I, Lyle S, Xi HS, et al. VEGF/neuropilin-2 regulation of Bmi-1 and consequent repression of IGF-IR define a novel mechanism of aggressive prostate cancer. Cancer Discov. 2012;2:906–21.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Polavaram NS, Dutta S, Islam R, Bag AK, Roy S, Poitz D, et al. Tumor- and osteoclast-derived NRP2 in prostate cancer bone metastases. Bone Res. 2021;9:24.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gerhauser C, Favero F, Risch T, Simon R, Feuerbach L, Assenov Y, et al. Molecular evolution of early-onset prostate cancer identifies molecular risk markers and clinical trajectories. Cancer Cell. 2018;34:996–1011.e1018.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ren S, Wei GH, Liu D, Wang L, Hou Y, Zhu S, et al. Whole-genome and transcriptome sequencing of prostate cancer identify new genetic alterations driving disease progression. Eur Urol. 2018;73:322–39.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18:11–22.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat JP, et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet. 2012;44:685–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Beltran H, Prandi D, Mosquera JM, Benelli M, Puca L, Cyrta J, et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med. 2016;22:298–305.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Abida W, Cyrta J, Heller G, Prandi D, Armenia J, Coleman I, et al. Genomic correlates of clinical outcome in advanced prostate cancer. Proc Natl Acad Sci USA. 2019;116:11428–36.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cheng S, Yu X. Bioinformatics analyses of publicly available NEPCa datasets. Am J Clin Exp Urol. 2019;7:327–40.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsai HK, Lehrer J, Alshalalfa M, Erho N, Davicioni E, Lotan TL. Gene expression signatures of neuroendocrine prostate cancer and primary small cell prostatic carcinoma. BMC Cancer. 2017;17:759.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • van Bokhoven A, Varella-Garcia M, Korch C, Johannes WU, Smith EE, Miller HL, et al. Molecular characterization of human prostate carcinoma cell lines. Prostate 2003;57:205–25.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Tai S, Sun Y, Squires JM, Zhang H, Oh WK, Liang CZ, et al. PC3 is a cell line characteristic of prostatic small cell carcinoma. Prostate 2011;71:1668–79.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Huss WJ, Gregory CW, Smith GJ. Neuroendocrine cell differentiation in the CWR22 human prostate cancer xenograft: association with tumor cell proliferation prior to recurrence. Prostate 2004;60:91–97.

    PubMed 
    Article 

    Google Scholar
     

  • Sramkoski RM, Pretlow TG 2nd, Giaconia JM, Pretlow TP, Schwartz S, Sy MS, et al. A new human prostate carcinoma cell line, 22Rv1. In Vitro Cell Dev Biol Anim. 1999;35:403–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bland T, Wang J, Yin L, Pu T, Li J, Gao J, et al. WLS-Wnt signaling promotes neuroendocrine prostate cancer. iScience 2021;24:101970.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Roche PJ, Hoare SA, Parker MG. A consensus DNA-binding site for the androgen receptor. Mol Endocrinol. 1992;6:2229–35.

    CAS 
    PubMed 

    Google Scholar
     

  • Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 2012;487:239–43.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Xu X, Huang YH, Li YJ, Cohen A, Li Z, Squires J, et al. Potential therapeutic effect of epigenetic therapy on treatment-induced neuroendocrine prostate cancer. Asian J Androl. 2017;19:686–93.

    PubMed 
    Article 

    Google Scholar
     

  • Zhang XQ, Kondrikov D, Yuan TC, Lin FF, Hansen J, Lin MF. Receptor protein tyrosine phosphatase alpha signaling is involved in androgen depletion-induced neuroendocrine differentiation of androgen-sensitive LNCaP human prostate cancer cells. Oncogene 2003;22:6704–16.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gray MJ, Van Buren G, Dallas NA, Xia L, Wang X, Yang AD, et al. Therapeutic targeting of neuropilin-2 on colorectal carcinoma cells implanted in the murine liver. J Natl Cancer Inst. 2008;100:109–20.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hu R, Dunn TA, Wei S, Isharwal S, Veltri RW, Humphreys E, et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res. 2009;69:16–22.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mu P, Zhang Z, Benelli M, Karthaus WR, Hoover E, Chen CC, et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science 2017;355:84–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wen Z, Zhong Z, Darnell JE Jr. Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell 1995;82:241–50.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Spiotto MT, Chung TD. STAT3 mediates IL-6-induced neuroendocrine differentiation in prostate cancer cells. Prostate 2000;42:186–95.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tolomeo M, Cascio A. The multifaced role of STAT3 in cancer and its implication for anticancer therapy. Int J Mol Sci. 2021;22:603.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Neufeld G, Kessler O, Herzog Y. The interaction of Neuropilin-1 and Neuropilin-2 with tyrosine-kinase receptors for VEGF. Adv Exp Med Biol. 2002;515:81–90.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sulpice E, Plouet J, Berge M, Allanic D, Tobelem G, Merkulova-Rainon T. Neuropilin-1 and neuropilin-2 act as coreceptors, potentiating proangiogenic activity. Blood 2008;111:2036–45.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hahn D, Simak R, Steiner GE, Handisurya A, Susani M, Marberger M. Expression of the VEGF-receptor Flt-1 in benign, premalignant and malignant prostate tissues. J Urol. 2000;164:506–10.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kaushal V, Mukunyadzi P, Dennis RA, Siegel ER, Johnson DE, Kohli M. Stage-specific characterization of the vascular endothelial growth factor axis in prostate cancer: expression of lymphangiogenic markers is associated with advanced-stage disease. Clin Cancer Res. 2005;11:584–93.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jackson MW, Roberts JS, Heckford SE, Ricciardelli C, Stahl J, Choong C, et al. A potential autocrine role for vascular endothelial growth factor in prostate cancer. Cancer Res. 2002;62:854–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Favier B, Alam A, Barron P, Bonnin J, Laboudie P, Fons P, et al. Neuropilin-2 interacts with VEGFR-2 and VEGFR-3 and promotes human endothelial cell survival and migration. Blood 2006;108:1243–50.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cai H, Reed RR. Cloning and characterization of neuropilin-1-interacting protein: a PSD-95/Dlg/ZO-1 domain-containing protein that interacts with the cytoplasmic domain of neuropilin-1. J Neurosci. 1999;19:6519–27.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Prahst C, Heroult M, Lanahan AA, Uziel N, Kessler O, Shraga-Heled N, et al. Neuropilin-1-VEGFR-2 complexing requires the PDZ-binding domain of neuropilin-1. J Biol Chem. 2008;283:25110–4.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ren X, Duan L, He Q, Zhang Z, Zhou Y, Wu D, et al. Identification of niclosamide as a new small-molecule inhibitor of the STAT3 signaling pathway. ACS Med Chem Lett. 2010;1:454–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 2017;45:D362–D368.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bishop JL, Thaper D, Vahid S, Davies A, Ketola K, Kuruma H, et al. The master neural transcription factor BRN2 Is an androgen receptor-suppressed driver of neuroendocrine differentiation in prostate cancer. Cancer Discov. 2017;7:54–71.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Foshay KM, Gallicano GI. Regulation of Sox2 by STAT3 initiates commitment to the neural precursor cell fate. Stem Cells Dev. 2008;17:269–78.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhu H, Chang LL, Yan FJ, Hu Y, Zeng CM, Zhou TY, et al. AKR1C1 activates STAT3 to promote the metastasis of non-small cell lung cancer. Theranostics 2018;8:676–92.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhao D, Pan C, Sun J, Gilbert C, Drews-Elger K, Azzam DJ, et al. VEGF drives cancer-initiating stem cells through VEGFR-2/Stat3 signaling to upregulate Myc and Sox2. Oncogene 2015;34:3107–19.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tse BWC, Volpert M, Ratther E, Stylianou N, Nouri M, McGowan K, et al. Neuropilin-1 is upregulated in the adaptive response of prostate tumors to androgen-targeted therapies and is prognostic of metastatic progression and patient mortality. Oncogene 2017;36:3417–27.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gritsina G, Gao WQ, Yu J. Transcriptional repression by androgen receptor: roles in castration-resistant prostate cancer. Asian J Androl. 2019;21:215–23.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu Y, Horn JL, Banda K, Goodman AZ, Lim Y, Jana S, et al. The androgen receptor regulates a druggable translational regulon in advanced prostate cancer. Sci Transl Med. 2019;11:eaaw4993.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Tam KJ, Dalal K, Hsing M, Cheng CW, Khosravi S, Yenki P, et al. Androgen receptor transcriptionally regulates semaphorin 3C in a GATA2-dependent manner. Oncotarget 2017;8:9617–33.

    PubMed 
    Article 

    Google Scholar
     

  • Lajoie BR, Dekker J, Kaplan N. The Hitchhiker’s guide to Hi-C analysis: practical guidelines. Methods 2015;72:65–75.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Khoury A, Achinger-Kawecka J, Bert SA, Smith GC, French HJ, Luu PL, et al. Constitutively bound CTCF sites maintain 3D chromatin architecture and long-range epigenetically regulated domains. Nat Commun. 2020;11:54.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Taberlay PC, Achinger-Kawecka J, Lun AT, Buske FA, Sabir K, Gould CM, et al. Three-dimensional disorganization of the cancer genome occurs coincident with long-range genetic and epigenetic alterations. Genome Res. 2016;26:719–31.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dutta S, Polavaram NS, Islam R, Bhattacharya S, Bodas S, Mayr T, et al. Neuropilin-2 regulates androgen-receptor transcriptional activity in advanced prostate cancer. Oncogene 2022;41:3747–60.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Labrecque MP, Coleman IM, Brown LG, True LD, Kollath L, Lakely B, et al. Molecular profiling stratifies diverse phenotypes of treatment-refractory metastatic castration-resistant prostate cancer. J Clin Investig. 2019;129:4492–505.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Giger RJ, Urquhart ER, Gillespie SK, Levengood DV, Ginty DD, Kolodkin AL. Neuropilin-2 is a receptor for semaphorin IV: insight into the structural basis of receptor function and specificity. Neuron 1998;21:1079–92.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Potiron VA, Sharma G, Nasarre P, Clarhaut JA, Augustin HG, Gemmill RM, et al. Semaphorin SEMA3F affects multiple signaling pathways in lung cancer cells. Cancer Res. 2007;67:8708–15.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Leave a Reply