Categories
Prostate cancer

FOXA1 inhibits hypoxia programs through transcriptional repression of HIF1A

  • Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA: A Cancer J Clin. 2021;71:7–33.


    Google Scholar
     

  • Karantanos T, Corn PG, Thompson TC. Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches. Oncogene. 2013;32:5501.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Litwin MS, Tan HJ. The diagnosis and treatment of prostate cancer: a review. Jama. 2017;317:2532–42.

    PubMed 
    Article 

    Google Scholar
     

  • Kupelian PA, Mahadevan A, Reddy CA, Reuther AM, Klein EA. Use of different definitions of biochemical failure after external beam radiotherapy changes conclusions about relative treatment efficacy for localized prostate cancer. Urology. 2006;68:593–8.

    PubMed 
    Article 

    Google Scholar
     

  • Tucci M, Zichi C, Buttigliero C, Vignani F, Scagliotti GV, Di Maio M. Enzalutamide-resistant castration-resistant prostate cancer: challenges and solutions. Onco Targets Ther. 2018;11:7353–68.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gupta K, Gupta S. Neuroendocrine differentiation in prostate cancer: key epigenetic players. Transl Cancer Res. 2017;6:S104–s108.

    PubMed 
    Article 

    Google Scholar
     

  • Jin HJ, Zhao JC, Wu L, Kim J, Yu J. Cooperativity and equilibrium with FOXA1 define the androgen receptor transcriptional program. Nat Commun. 2014;5:3972.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Song B, Park SH, Zhao JC, Fong KW, Li S, Lee Y, et al. Targeting FOXA1-mediated repression of TGF-beta signaling suppresses castration-resistant prostate cancer progression. J Clin Invest. 2019;129:569–82.

    PubMed 
    Article 

    Google Scholar
     

  • Wang D, Garcia-Bassets I, Benner C, Li W, Su X, Zhou Y, et al. Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature. 2011;474:390–4.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kim J, Jin H, Zhao JC, Yang YA, Li Y, Yang X, et al. FOXA1 inhibits prostate cancer neuroendocrine differentiation. Oncogene. 2017;36:4072–80.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jin HJ, Zhao JC, Ogden I, Bergan RC, Yu J. Androgen receptor-independent function of FoxA1 in prostate cancer metastasis. Cancer Res. 2013;73:3725–36.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu YN, Abou-Kheir W, Yin JJ, Fang L, Hynes P, Casey O, et al. Critical and reciprocal regulation of KLF4 and SLUG in transforming growth factor beta-initiated prostate cancer epithelial-mesenchymal transition. Mol Cell Biol. 2012;32:941–53.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3:721–32.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Semenza GL. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene. 2010;29:625–34.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vaupel P, Kelleher DK, Hockel M. Oxygen status of malignant tumors: pathogenesis of hypoxia and significance for tumor therapy. Semin Oncol. 2001;28:29–35.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vergis R, Corbishley CM, Norman AR, Bartlett J, Jhavar S, Borre M, et al. Intrinsic markers of tumour hypoxia and angiogenesis in localised prostate cancer and outcome of radical treatment: a retrospective analysis of two randomised radiotherapy trials and one surgical cohort study. Lancet Oncol. 2008;9:342–51.

    PubMed 
    Article 

    Google Scholar
     

  • Fraga A, Ribeiro R, Principe P, Lopes C, Medeiros R. Hypoxia and prostate cancer aggressiveness: a tale with many endings. Clin Genitourin Cancer. 2015;13:295–301.

    PubMed 
    Article 

    Google Scholar
     

  • Tang N, Wang L, Esko J, Giordano FJ, Huang Y, Gerber HP, et al. Loss of HIF-1alpha in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell. 2004;6:485–95.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhong H, Semenza GL, Simons JW, De Marzo AM. Up-regulation of hypoxia-inducible factor 1alpha is an early event in prostate carcinogenesis. Cancer Detect Prev. 2004;28:88–93.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ranasinghe WK, Xiao L, Kovac S, Chang M, Michiels C, Bolton D, et al. The role of hypoxia-inducible factor 1α in determining the properties of castrate-resistant prostate cancers. PLoS One. 2013;8:e54251.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Palazon A, Goldrath AW, Nizet V, Johnson RS. HIF transcription factors, inflammation, and immunity. Immunity. 2014;41:518–28.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li N, Li Y, Li Z, Huang C, Yang Y, Lang M, et al. Hypoxia Inducible Factor 1 (HIF-1) recruits macrophage to activate pancreatic stellate cells in pancreatic ductal adenocarcinoma. Int J Mol Sci. 2016;17:799.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Korbecki J, Kojder K, Barczak K, Siminska D, Gutowska I, Chlubek D. et al. Hypoxia alters the expression of CC chemokines and CC chemokine receptors in a Tumor-A literature review. Int J Mol Sci. 2020;21:5647.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Su W, Han HH, Wang Y, Zhang B, Zhou B, Cheng Y, et al. The polycomb repressor Complex 1 drives double-negative prostate cancer metastasis by coordinating stemness and immune suppression. Cancer Cell. 2019;36:139–.e110.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tsai YC, Chen WY, Abou-Kheir W, Zeng T, Yin JJ, Bahmad H, et al. Androgen deprivation therapy-induced epithelial-mesenchymal transition of prostate cancer through downregulating SPDEF and activating CCL2. Biochim Biophys Acta Mol Basis Dis. 2018;1864:1717–27.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Loberg RD, Ying C, Craig M, Yan L, Snyder LA, Pienta KJ. CCL2 as an important mediator of prostate cancer growth in vivo through the regulation of macrophage infiltration. Neoplasia. 2007;9:556–62.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lee GT, Kwon SJ, Kim J, Kwon YS, Lee N, Hong JH, et al. WNT5A induces castration-resistant prostate cancer via CCL2 and tumour-infiltrating macrophages. Br J Cancer. 2018;118:670–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lim SY, Yuzhalin AE, Gordon-Weeks AN, Muschel RJ. Targeting the CCL2-CCR2 signaling axis in cancer metastasis. Oncotarget. 2016;7:28697–710.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang K, Luo J, Yeh S, You B, Meng J, Chang P, et al. The MAO inhibitors phenelzine and clorgyline revert enzalutamide resistance in castration-resistant prostate cancer. Nat Commun. 2020;11:2689.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guo H, Ci X, Ahmed M, Hua JT, Soares F, Lin D, et al. ONECUT2 is a driver of neuroendocrine prostate cancer. Nat Commun. 2019;10:278.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Tran MGB, Bibby BAS, Yang L, Lo F, Warren AY, Shukla D, et al. Independence of HIF1a and androgen signaling pathways in prostate cancer. BMC Cancer. 2020;20:469.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Geng H, Xue C, Mendonca J, Sun XX, Liu Q, Reardon PN, et al. Interplay between hypoxia and androgen controls a metabolic switch conferring resistance to androgen/AR-targeted therapy. Nat Commun. 2018;9:4972.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Milosevic M, Warde P, Ménard C, Chung P, Toi A, Ishkanian A, et al. Tumor hypoxia predicts biochemical failure following radiotherapy for clinically localized prostate cancer. Clin Cancer Res. 2012;18:2108–14.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Phatnani HP, Greenleaf AL. Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev. 2006;20:2922–36.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu YQ, Kyle E, Patel S, Housseau F, Hakim F, Lieberman R, et al. Prostate cancer chemoprevention agents exhibit selective activity against early-stage prostate cancer cells. Prostate Cancer Prostatic Dis. 2001;4:81–91.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18:11–22.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lapointe J, Li C, Higgins JP, van de Rijn M, Bair E, Montgomery K, et al. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci USA. 2004;101:811–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wigerup C, Påhlman S, Bexell D. Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharm Ther. 2016;164:152–69.

    CAS 
    Article 

    Google Scholar
     

  • Lo CH, Lynch CC. Multifaceted roles for macrophages in prostate cancer skeletal metastasis. Front Endocrinol. 2018;9:247.

    Article 

    Google Scholar
     

  • Lin Y, Xu J, Lan H. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol. 2019;12:76.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Narita T, Yin SM, Gelin CF, Nicolaou KC, Van Meir EG. Identification of a novel small molecule Hif-1a translation inhibitor. Neuro-Oncol. 2009;11:946–946.


    Google Scholar
     

  • Brahimi-Horn MC, Pouyssegur J. The hypoxia-inducible factor and tumor progression along the angiogenic pathway. Int Rev Cytol. 2005;242:157–213.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Noman MZ, Hasmim M, Messai Y, Terry S, Kieda C, Janji B, et al. Hypoxia: a key player in antitumor immune response. A review in the theme: cellular responses to hypoxia. Am J Physiol Cell Physiol. 2015;309:C569–579.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Mimeault M, Batra SK. Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer- and metastasis-initiating cells. J Cell Mol Med. 2013;17:30–54.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fumagalli D, Wilson TR, Salgado R, Lu X, Yu J, O’Brien C, et al. Somatic mutation, copy number and transcriptomic profiles of primary and matched metastatic estrogen receptor-positive breast cancers. Ann Oncol. 2016;27:1860–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu Y, Carlsson R, Comabella M, Wang J, Kosicki M, Carrion B, et al. FoxA1 directs the lineage and immunosuppressive properties of a novel regulatory T cell population in EAE and MS. Nat Med. 2014;20:272–82.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • He Y, Wang L, Wei T, Xiao YT, Sheng H, Su H, et al. FOXA1 overexpression suppresses interferon signaling and immune response in cancer. J Clin Invest. 2021;131:e147025.

    PubMed Central 
    Article 

    Google Scholar
     

  • Henze AT, Mazzone M. The impact of hypoxia on tumor-associated macrophages. J Clin Invest. 2016;126:3672–9.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nguyen HM, Vessella RL, Morrissey C, Brown LG, Coleman IM, Higano CS, et al. LuCaP prostate cancer patient-derived xenografts reflect the molecular heterogeneity of advanced disease and serve as models for evaluating cancer therapeutics. Prostate. 2017;77:654–71.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Leave a Reply