Categories
Prostate cancer

Targeting HIC1/TGF-β axis-shaped prostate cancer microenvironment restrains its progression

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    PubMed 
    Article 

    Google Scholar
     

  • Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72:7–33.

    PubMed 
    Article 

    Google Scholar
     

  • Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66:115–32.

    PubMed 
    Article 

    Google Scholar
     

  • Culp MB, Soerjomataram I, Efstathiou JA, Bray F, Jemal A. Recent global patterns in prostate cancer incidence and mortality rates. Eur Urol. 2020;77:38–52.

    PubMed 
    Article 

    Google Scholar
     

  • Teo MYRD, Kantoff P. Treatment of advanced prostate cancer. Annu Rev Med. 2019;70:479–99.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vitale I, Manic G, Coussens LM, Kroemer G, Galluzzi L. Macrophages and metabolism in the tumor microenvironment. Cell Metab. 2019;30:36–50.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Komohara Y, Takeya M. CAFs and TAMs: maestros of the tumour microenvironment. J Pathol. 2017;241:313–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Braun DA, Street K, Burke KP, Cookmeyer DL, Denize T, Pedersen CB, et al. Progressive immune dysfunction with advancing disease stage in renal cell carcinoma. Cancer Cell. 2021;39:632–48.e8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen X, Song E. Turning foes to friends: targeting cancer-associated fibroblasts. Nat Rev Drug Discov. 2019;18:99–115.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kojima YAA, Eaton EN, Mellody KT, Scheel C, Ben-Porath I, Onder TT, et al. Autocrine TGF-β and stromal cell-derived factor-1(SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblast. Proc Natl Acad Sci USA. 2010;107:20009–14.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Herrera M, Herrera A, Dominguez G, Silva J, Garcia V, Garcia JM, et al. Cancer-associated fibroblast and M2 macrophage markers together predict outcome in colorectal cancer patients. Cancer Sci. 2013;104:437–44.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hashimoto O, Yoshida M, Koma Y, Yanai T, Hasegawa D, Kosaka Y, et al. Collaboration of cancer-associated fibroblasts and tumour-associated macrophages for neuroblastoma development. J Pathol. 2016;240:211–23.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Comito GEG, Segura CP, Barcellos-de-Souza P, Raspollini MR, Baroni G, Lanciotti M, et al. Cancer-associated fibroblasts and M2-polarized macrophages synergize during prostate carcinoma progression. Oncogene. 2014;33:2423–31.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gok Yavuz BGG, Gedik ME, Kosemehmetoglu K, Karakoc D, Ozgur F, Guc D. Cancer associated fibroblasts sculpt tumour microenvironment by recruiting monocytes and inducing immunosuppressive PD-1+ TAMs. Sci Rep. 2019;9:3172.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Gordon SRMR, Dulken BW, Hutter G, George BM, McCracken MN, Gupta R, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017;545:495–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Logtenberg MEWSF, Schumacher TN. The CD47-SIRPα immune checkpoint. Immunity. 2020;52:742–52.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang Y, Weng X, Wang L, Hao M, Li Y, Hou L, et al. HIC1 deletion promotes breast cancer progression by activating tumor cell/fibroblast crosstalk. JCI. 2018;128:5235–50.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fleuriel C, Touka M, Boulay G, Guerardel C, Rood BR, Leprince D. HIC1 (Hypermethylated in Cancer 1) epigenetic silencing in tumors. Int J Biochem Cell Biol. 2009;41:26–33.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen WY, Wang DH, Yen RC, Luo J, Gu W, Baylin SB. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell. 2005;123:437–48.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cheng G, Sun X, Wang J, Xiao G, Wang X, Fan X, et al. HIC1 silencing in triple-negative breast cancer drives progression through misregulation of LCN2. Cancer Res. 2014;74:862–72.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen HC, Huang HY, Chen YL, Lee KD, Chu YR, Lin PY, et al. Methylation of the tumor suppressor genes HIC1 and RassF1A clusters independently from the methylation of polycomb target genes in colon cancer. Ann Surgical Oncol. 2017;24:578–85.

    Article 

    Google Scholar
     

  • Śnit MMM, Ścierski W, Koniewska A, Stryjewska-Makuch G, Okła S, Grzeszczak W. DIAPH2, PTPRD and HIC1 gene polymorphisms and laryngeal cancer risk. Int J Environ Res Public Health. 2021;18:7486.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Ray H, Chang C. The transcription factor Hypermethylated in Cancer 1 (Hic1) regulates neural crest migration via interaction with Wnt signaling. Dev Biol. 2020;463:169–81.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mohammad HP, Zhang W, Prevas HS, Leadem BR, Zhang M, Herman JG, et al. Loss of a single Hic1 allele accelerates polyp formation in Apc(Delta716) mice. Oncogene. 2011;30:2659–69.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hao M, Li Y, Wang J, Qin J, Wang Y, Ding Y, et al. HIC1 loss promotes prostate cancer metastasis by triggering epithelial-mesenchymal transition. J Pathol. 2017;242:409–20.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Drost J, Karthaus WR, Gao D, Driehuis E, Sawyers CL, Chen Y, et al. Organoid culture systems for prostate epithelial and cancer tissue. Nat Protoc. 2016;11:347–58.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Foster BA, Gingrich JR, Kwon ED, Madias C, Greenberg NM. Characterization of prostatic epithelial cell lines derived from transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Cancer Res. 1997;57:3325–30.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhao X, Wang Y, Deng R, Zhang H, Dou J, Yuan H, et al. miR186 suppresses prostate cancer progression by targeting Twist1. Oncotarget. 2016;7:33136–51.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kanehisa MFM, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2016;4:D353–D61.


    Google Scholar
     

  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fornes O, Castro-Mondragon JA, Khan A, van der Lee R, Zhang X, Richmond PA, et al. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2020;48:D87–D92.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zheng RWC, Mei S, Qin Q, Wu Q, Sun H, Chen CH, et al. Cistrome Data Browser: expanded datasets and new tools for gene regulatory analysis. Nucleic Acids Res. 2019;47:D729–35.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Davis CAHB, Sloan CA, Chan ET, Davidson JM, Gabdank I, Hilton JA, et al. The Encyclopedia of DNA elements (ENCODE): data portal update. Nucleic Acids Res. 2018;46:D794–801.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Daily KPV, Rigor P, Xie X, Baldi P. MotifMap: integrative genome-wide maps of regulatory motif sites for model species. Bioinformatics 2011;12:495.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roider HGMT, O’ Keeffe S, Vingron M, Haas SA. PASTAA: identifying transcription factors associated with sets of co-regulated. Bioinformatics 2009;25:435–42.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Katoh MKM. Integrative genomic analyses of CXCR4: transcriptional regulation of CXCR4 based on TGFβ, Nodal, Activin signaling and POU5F1, FOXA2, FOXC2, FOXH1, SOX17, and GFI1 transcription factors. Int J Oncol. 2010;36:415–20.

    CAS 
    PubMed 

    Google Scholar
     

  • Hussain SM, Kansal RG, Alvarez MA, Hollingsworth TJ, Elahi A, Miranda-Carboni G, et al. Role of TGF-beta in pancreatic ductal adenocarcinoma progression and PD-L1 expression. Cell Oncol. 2021;44:673–87.

    CAS 
    Article 

    Google Scholar
     

  • Qu X, Shen L, Zheng Y, Cui Y, Feng Z, Liu F, et al. A signal transduction pathway from TGF-beta1 to SKP2 via Akt1 and c-Myc and its correlation with progression in human melanoma. J Invest Dermatol. 2014;134:159–67.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liang K, Smith ER, Aoi Y, Stoltz KL, Katagi H, Woodfin AR, et al. Targeting processive transcription elongation via SEC disruption for MYC-induced cancer therapy. Cell. 2018;175:766–79.e17.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Donato E, Croci O, Sabo A, Muller H, Morelli MJ, Pelizzola M, et al. Compensatory RNA polymerase 2 loading determines the efficacy and transcriptional selectivity of JQ1 in Myc-driven tumors. Leukemia. 2017;31:479–90.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lee BK, Bhinge AA, Battenhouse A, McDaniell RM, Liu Z, Song L, et al. Cell-type specific and combinatorial usage of diverse transcription factors revealed by genome-wide binding studies in multiple human cells. Genome Res. 2012;22:9–24.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pelon F, Bourachot B, Kieffer Y, Magagna I, Mermet-Meillon F, Bonnet I, et al. Cancer-associated fibroblast heterogeneity in axillary lymph nodes drives metastases in breast cancer through complementary mechanisms. Nat Commun. 2020;11:404.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Costa A, Kieffer Y, Scholer-Dahirel A, Pelon F, Bourachot B, Cardon M, et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell. 2018;33:463–79.e10.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Maxwell PJ, Gallagher R, Seaton A, Wilson C, Scullin P, Pettigrew J, et al. HIF-1 and NF-kappaB-mediated upregulation of CXCR1 and CXCR2 expression promotes cell survival in hypoxic prostate cancer cells. Oncogene. 2007;26:7333–45.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Murphy CMM, Pettigrew J, Santinelli A, Mazzucchelli R, Johnston PG, Montironi R, et al. Nonapical and cytoplasmic expression of interleukin-8, CXCR1, and CXCR2 correlates with cell proliferation and microvessel density in prostate cancer. Clin Cancer Res. 2005;11:4117–27.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bueno L, de Alwis DP, Pitou C, Yingling J, Lahn M, Glatt S, et al. Semi-mechanistic modelling of the tumour growth inhibitory effects of LY2157299, a new type I receptor TGF-beta kinase antagonist, in mice. Eur J Cancer. 2008;44:142–50.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wong KY, Chim CS. DNA methylation of tumor suppressor protein-coding and non-coding genes in multiple myeloma. Epigenomics. 2015;7:985–1001.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zheng J, Wang J, Sun X, Hao M, Ding T, Xiong D, et al. HIC1 modulates prostate cancer progression by epigenetic modification. Clin Cancer Res. 2013;19:1400–10.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Briggs KJ, Corcoran-Schwartz IM, Zhang W, Harcke T, Devereux WL, Baylin SB, et al. Cooperation between the Hic1 and Ptch1 tumor suppressors in medulloblastoma. Genes Dev. 2008;22:770–85.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li Y, Yao M, Wu T, Zhang L, Wang Y, Chen L, et al. Loss of hypermethylated in cancer 1 (HIC1)promotes lung cancer progression. Cell Signal. 2018;53:162–9.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Batlle E, Massague J. Transforming growth factor-beta signaling in immunity and cancer. Immunity. 2019;50:924–40.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang J, Deng YT, Liu J, Wang YQ, Yi TW, Huang BY, et al. Norepinephrine induced epithelial-mesenchymal transition in HT-29 and A549 cells in vitro. J Cancer Res Clin Oncol. 2016;142:423–35.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tauriello DVF, Palomo-Ponce S, Stork D, Berenguer-Llergo A, Badia-Ramentol J, Iglesias M, et al. TGFbeta drives immune evasion in genetically reconstituted colon cancer metastasis. Nature. 2018;554:538–43.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • de Caestecker M. The transforming growth factor-β superfamily of receptors. Cytokine Growth Factor Rev. 2004;15:1–11.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Sica A, Bronte V. Altered macrophage differentiation and immune dysfunction in tumor development. JCI. 2007;117:1155–66.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jiang QSY, Liu X. CXCR4 as a prognostic biomarker in gastrointestinal cancer: a meta-analysis. Biomarkers. 2019:510–6.

  • Arwert ENHA, Entenberg D, Wang Y, Sahai E, Pollard JW, Condeelis JS. A unidirectional transition from migratory to perivascular macrophage is required for tumor cell intravasation. Cell Rep. 2018;23:1239–48.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Choi SH, Kim AR, Nam JK, Kim JM, Kim JY, Seo HR, et al. Tumour-vasculature development via endothelial-to-mesenchymal transition after radiotherapy controls CD44v6(+) cancer cell and macrophage polarization. Nat Commun. 2018;9:5108.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Yagi KFM, Aoki H, Goto D, Kuwano H, Sugamura K, Miyazono K, et al. c-myc is a downstream target of the Smad pathway. J Biol Chem. 2002;277:854–61.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Feng XHLY, Liang M, Zhai W, Lin X. Direct Interaction of c-Myc with Smad2 and Smad3 to inhibit TGF-β-mediated induction of the CDK inhibitor p15(Ink4B). Mol Cell. 2016;62:152.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ahmadi SERS, Zarandi B, Chegeni R, Safa M. MYC: a multipurpose oncogene with prognostic and therapeutic implications in blood malignancies. J Hematol Oncol. 2021;14:121.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang YAP, Wang XF. TGF-β family signaling in the control of cell proliferation and survival. Cold Spring Harb Perspect Biol. 2017;9:a022145.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Qiu WZ, Zhang HB, Xia WX, Ke LR, Yang J, Yu YH, et al. The CXCL5/CXCR2 axis contributes to the epithelial-mesenchymal transition of nasopharyngeal carcinoma cells by activating ERK/GSK-3beta/snail signalling. J Exp Clin Cancer Res. 2018;37:85.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Zhou Z, Xia G, Xiang Z, Liu M, Wei Z, Yan J, et al. A C-X-C chemokine receptor type 2-dominated cross-talk between tumor cells and macrophages drives gastric cancer metastasis. Clin Cancer Res. 2019;25:3317–28.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Romero-Moreno R, Curtis KJ, Coughlin TR, Cristina Miranda-Vergara M, Dutta S, Natarajan A, et al. The CXCL5/CXCR2 axis is sufficient to promote breast cancer colonization during bone metastasis. Nat Commun. 2019;10:4404.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Qi Y, Zhao W, Li M, Shao M, Wang J, Sui H, et al. High C-X-C motif chemokine 5 expression is associated with malignant phenotypes of prostate cancer cells via autocrine and paracrine pathways. Int J Oncol. 2018;53:358–70.

    CAS 
    PubMed 

    Google Scholar
     

  • Jiao S, Subudhi SK, Aparicio A, Ge Z, Guan B, Miura Y, et al. Differences in tumor microenvironment dictate T helper lineage polarization and response to immune checkpoint therapy. Cell. 2019;179:1177–90.e13.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • He MX, Cuoco MS, Crowdis J, Bosma-Moody A, Zhang Z, Bi K, et al. Transcriptional mediators of treatment resistance in lethal prostate cancer. Nat Med. 2021;27:426–33.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jeong MH, Park SY, Lee SH, Seo J, Yoo JY, Park SH, et al. EPB41L5 mediates TGFbeta-induced metastasis of gastric cancer. Clin Cancer Res. 2019;25:3617–29.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dietrich P, Hellerbrand C, Bosserhoff A. The delta subunit of rod-specific photoreceptor cGMP phosphodiesterase (PDE6D) contributes to hepatocellular carcinoma progression. Cancers. 2019;11:398.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Herbertz S, Sawyer JS, Stauber AJ, Gueorguieva I, Driscoll KE, Estrem ST, et al. Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway. Drug Des Devel Ther. 2015;9:4479–99.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nonomura NTH, Nakayama M, Nakai Y, Kawashima A, Mukai M, Nagahara A. et al. Infiltration of tumour-associated macrophages in prostate biopsy specimens is predictive of disease progression after hormonal therapy for prostate cancer. BJU Int. 2011;107:1918–22.

    PubMed 
    Article 

    Google Scholar
     

  • Zhang R, Zong J, Peng Y, Shi J, Du X, Liu H. et al. GPR30 knockdown weakens the capacity of CAF in promoting prostate cancer cell invasion via reducing macrophage infiltration and M2 polarization. J Cell Biochem. 2021;122:1173–91.

    CAS 
    Article 

    Google Scholar
     

  • Leave a Reply