Categories
Prostate cancer

Urinary marker panels for aggressive prostate cancer detection

  • Grossman, D. C. et al. Screening for prostate cancer: US preventive services task force recommendation statement. JAMA 319, 1901–1913 (2018).

    PubMed 

    Google Scholar
     

  • Heijnsdijk, E. A. M. et al. Lifetime benefits and harms of prostate-specific antigen-based risk-stratified screening for prostate cancer. J Natl Cancer Inst 112, 1013–1020 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ilic, D. et al. Prostate cancer screening with prostate-specific antigen (PSA) test: a systematic review and meta-analysis. BMJ 362, k3519 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinsky, P. F., Prorok, P. C. & Kramer, B. S. Prostate cancer screening: a perspective on the current state of the evidence. N Engl J Med 376, 1285–1289 (2017).

    PubMed 

    Google Scholar
     

  • Wu, D. et al. Urinary biomarkers in prostate cancer detection and monitoring progression. Crit Rev Oncol Hematol 118, 15–26 (2017).

    PubMed 

    Google Scholar
     

  • Chen, J., Oromendia, C., Halpern, J. A. & Ballman, K. V. National trends in management of localized prostate cancer: a population based analysis 2004–2013. Prostate 78, 512–520 (2018).

    PubMed 

    Google Scholar
     

  • Loeb, S., Berglund, A. & Stattin, P. Population based study of use and determinants of active surveillance and watchful waiting for low and intermediate risk prostate cancer. J. Urol. 190, 1742–1749 (2013).

    PubMed 

    Google Scholar
     

  • Choo, R. et al. Feasibility study: watchful waiting for localized low to intermediate grade prostate carcinoma with selective delayed intervention based on prostate specific antigen, histological and/or clinical progression. J. Urol. 167, 1664–1669 (2002).

    PubMed 

    Google Scholar
     

  • Kinsella, N. et al. Factors influencing men’s choice of and adherence to active surveillance for low-risk prostate cancer: a mixed-method systematic review. Eur. Urol. 74, 261–280 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Descotes, J. L. Diagnosis of prostate cancer. Asian J. Urol. 6, 129–136 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fujita, K. & Nonomura, N. Urinary biomarkers of prostate cancer. Int. J. Urol. 25, 770–779 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Hendriks, R. J., van Oort, I. M. & Schalken, J. A. Blood-based and urinary prostate cancer biomarkers: a review and comparison of novel biomarkers for detection and treatment decisions. Prostate Cancer Prostatic Dis. 20, 12–19 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Dong, M. et al. Urinary glycoproteins associated with aggressive prostate cancer. Theranostics 10, 11892–11907 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berman, D. M. & Epstein, J. I. When is prostate cancer really cancer?. Urol. Clin. N. Am. 41, 339–346 (2014).


    Google Scholar
     

  • Eskra, J. N., Rabizadeh, D., Pavlovich, C. P., Catalona, W. J. & Luo, J. Approaches to urinary detection of prostate cancer. Prostate Cancer Prostatic Dis. 22, 362–381 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia, X. et al. Detection of aggressive prostate cancer associated glycoproteins in urine using glycoproteomics and mass spectrometry. Proteomics 16, 2989–2996 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinho, S. S. & Reis, C. A. Glycosylation in cancer: mechanisms and clinical implications. Nat. Rev. Cancer 15, 540–555 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Glycoproteomic analysis of prostate cancer tissues by SWATH mass spectrometry discovers N-acylethanolamine acid amidase and protein tyrosine kinase 7 as signatures for tumor aggressiveness. Mol. Cell Proteomics 13, 1753–1768 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clark, D. J., Hoti, N., Sun, S. S. & Zhang, H. Comprehensive analysis of protein glycosylation from prostate cancer cells using automated methods to release glycans and glycosite-containing peptides. Glycobiology 26, 1476–1477 (2016).


    Google Scholar
     

  • Clark, D. J. et al. Simple tip-based sample processing method for urinary proteomic analysis. Anal. Chem. 91, 5517–5522 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Truong, M., Yang, B. & Jarrard, D. F. Toward the detection of prostate cancer in urine: a critical analysis. J. Urol. 189, 422–429 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Chen, S. Y. et al. Glycans, glycosite, and intact glycopeptide analysis of N-linked glycoproteins using liquid handling systems. Anal. Chem. 92, 1680–1686 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong, M. et al. Development of parallel reaction monitoring assays for the detection of aggressive prostate cancer using urinary glycoproteins. J. Proteome Res. 20, 3590–3599 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, R. C. et al. Active surveillance for the management of localized prostate cancer (Cancer Care Ontario Guideline): American Society of Clinical Oncology clinical practice guideline endorsement. J. Clin. Oncol. 34, 2182–2190 (2016).

    PubMed 

    Google Scholar
     

  • Sanda, M. G. et al. Clinically localized prostate cancer: AUA/ASTRO/SUO guideline. Part I: risk stratification, shared decision making, and care options. J. Urol. 199, 683–690 (2018).

    PubMed 

    Google Scholar
     

  • Klotz, L. Contemporary approach to active surveillance for favorable risk prostate cancer. Asian J. Urol. 6, 146–152 (2019).

    PubMed 

    Google Scholar
     

  • Rittenhouse, H., Blase, A., Shamel, B., Schalken, J. & Groskopf, J. The long and winding road to FDA approval of a novel prostate cancer test: our story. Clin. Chem. 59, 32–34 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Stephan, C., Ralla, B. & Jung, K. Prostate-specific antigen and other serum and urine markers in prostate cancer. Biochim. Biophys. Acta 1846, 99–112 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Rodriguez, M. et al. Identification of non-invasive miRNAs biomarkers for prostate cancer by deep sequencing analysis of urinary exosomes. Mol. Cancer 16, 156 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, F. et al. A urine-based DNA methylation assay, ProCUrE, to identify clinically significant prostate cancer. Clin. Epigenet. 10, 147 (2018).

    CAS 

    Google Scholar
     

  • Leyten, G. H. et al. Prospective multicentre evaluation of PCA3 and TMPRSS2-ERG gene fusions as diagnostic and prognostic urinary biomarkers for prostate cancer. Eur. Urol. 65, 534–542 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • O’Reilly, E. et al. epiCaPture: a urine DNA methylation test for early detection of aggressive prostate cancer. JCO Precis. Oncol. 3, 1–18 (2019).


    Google Scholar
     

  • Connell, S. P. et al. A four-group urine risk classifier for predicting outcome in prostate cancer patients. BJU Int. https://doi.org/10.1111/bju.14811 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dijkstra, S. et al. Cost-effectiveness of a new urinary biomarker-based risk score compared to standard of care in prostate cancer diagnostics: a decision analytical model. BJU Int. 120, 659–665 (2017).

    PubMed 

    Google Scholar
     

  • Donovan, M. J. et al. A molecular signature of PCA3 and ERG exosomal RNA from non-DRE urine is predictive of initial prostate biopsy result. Prostate Cancer Prostatic Dis. 18, 370–375 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Kim, Y. et al. Targeted proteomics identifies liquid-biopsy signatures for extracapsular prostate cancer. Nat. Commun. 7, 11906 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chuang, T. D. et al. Human prostatic acid phosphatase, an authentic tyrosine phosphatase, dephosphorylates ErbB-2 and regulates prostate cancer cell growth. J. Biol. Chem. 285, 23598–23606 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Veeramani, S. et al. Cellular prostatic acid phosphatase: a protein tyrosine phosphatase involved in androgen-independent proliferation of prostate cancer. Endocr. Relat. Cancer 12, 805–822 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Ergun, A., Lawrence, C. A., Kohanski, M. A., Brennan, T. A. & Collins, J. J. A network biology approach to prostate cancer. Mol. Syst. Biol. 3, 82 (2007).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whitworth, H. et al. Identification of kinases regulating prostate cancer cell growth using an RNAi phenotypic screen. PLoS ONE 7, e38950 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ward, Y. et al. LPA receptor heterodimerizes with CD97 to amplify LPA-initiated RHO-dependent signaling and invasion in prostate cancer cells. Cancer Res. 71, 7301–7311 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Q. K. et al. Improving the detection of aggressive prostate cancer using immunohistochemical staining of protein marker panels. Am. J. Cancer Res. 12, 1323–1336 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stark, J. R. et al. Gleason score and lethal prostate cancer: does 3 + 4 = 4 + 3?. J. Clin. Oncol. 27, 3459–3464 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leave a Reply